
Annex Document Z
Behavior Language for Embedded Systems with Software

Normative
v0.9

December 2, 2016

0

SAE Technical Standards Board Rules provide that: This report is published by SAE to advance the state of technical and engineering
sciences. The use of this report is entirely voluntary, and its applicability and suitability for any particular use, including any patent
infringement arising therefrom, is the sole responsibility of the user.

SAE reviews each technical report at least every five years at which time it may be reaffirmed, revised, or cancelled. SAE invites
your written comments and suggestions.

Copyright c©2015 SAE International

1

SAE INTERNATIONAL AS5506/Z BLESS Annex v0.9 Page 2 of 159

Note to SAE International AS-2C AADL Standard Committee members:

This draft v0.9 has annotations in color and footnotes, that will be omitted from the balloted draft, especially
for the Committee.

Direct quotes from Etienne’s BA-with-errata revision of the original BA text going for informal ballot, are
colored like this.

Parts concerning the merged formal semantics of BLESS with JP’s synchronous semantics, are colored like
this, and are indexed under ‘JP’.

Quotations of BA, generate both footnotes and index entries under “BA quotation”. References to BA para-
graphs, of similar subject, but not quoted, get footnote and listings under “BA quotation”, too, but are not
colored.

Items related to BLESS reconciliation get footnotes and listing in the index under “Reconciliation”.

Some of the significant differences between BA and BLESS get footnotes and listing in the index under
“BLESS Differs from BA”.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any
means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of SAE.
TO PLACE A DOCUMENT ORDER: Tel: 877-606-7323 (inside USA and Canada) 724-776-4970 (outside USA)
Fax: 724-776-0790 Email: custsvc@sae.org SAE WEB ADDRESS: http://www.sae.org

Preface

(1) The SAE Architecture Analysis and Design Language1 (referred to in this document as AADL) is a textual
and graphical language used to design and analyze the software and hardware architecture of performance-
critical real-time systems. These are systems whose operation strongly depends on meeting non-functional
system requirements such as reliability, availability, timing, responsiveness, throughput, safety, and security.
AADL is used to describe the structure of such systems as an assembly of software components mapped
onto an execution platform. It can be used to describe functional interfaces to components (such as data
inputs and outputs) and performance-critical aspects of components (such as timing). AADL can also be
used to describe how components interact, such as how data inputs and outputs are connected or how
application software components are allocated to execution platform components. The language can also be
used to describe the dynamic behavior of the runtime architecture by providing support to model operational
modes and mode transitions. The language is designed to be extensible to accommodate analyses of the
runtime architectures that the core language does not completely support. Extensions can take the form of
new properties and analysis specific notations that can be associated with components and are standardized
themselves.2

(2) AADL was developed to meet the special needs of performance-critical real-time systems, including em-
bedded real-time systems such as avionics, automotive electronics, or robotics systems. The language
can describe important performance-critical aspects such as timing requirements, fault and error behaviors,
time and space partitioning, and safety and certification properties. Such a description allows a system de-
signer to perform analyses of the composed components and systems such as system schedulability, sizing
analysis, and safety analysis. From these analyses, the designer can evaluate architectural tradeoffs and
changes.3

(3) AADL supports analysis of cross cutting impact of change in the architecture along multiple analysis dimen-
sions in a consistent manner. Consistency is achieved through automatic generation of analysis models
from the annotated architecture model. AADL is designed to be used with generation tools that support the
automatic generation of the source code needed to integrate the system components and build a system
executive from validated models. This architecture-centric approach to model-based engineering permits

1SAE International standard AS5506C
2BA intro (1)
3BA intro (2)

3

SAE INTERNATIONAL AS5506/Z BLESS Annex v0.9 Page 4 of 159

incremental validation and verification of system models against requirements and implementations against
systems models throughout the development lifecycle.4

(4) The original Annex D document defined a behavior modeling language that became known as ‘BA’ for
Behavior Annex which targeted the following goals:

• Describe the internal behavior of component implementations as a state transition system with guards
and actions. However, the aim is not to replace programming languages or to express complex sub-
program computations.

• Extend the default run-time execution semantics that is specified by the core of the standard, such as
thread dispatch protocols.

• Provide more precise subprogram calls synchronization protocols for client-server architectures.
5

(5) BA was meant to abstractly model behavior for schedulability analysis, and the like, early in the system design
process. The actual design artifact (i.e. Ada program) would be written by hand, albeit with some help from
code generators to make sure program interfaces conform to architecture. Having the actual design artifacts,
better estimates could be used to re-run the analyses, but the defined BA behavior would never be used in
a product. Lack of a type system or semantics was no hindrance to such behavior modeling.

(6) Concurrently, work began on a state-transition language that would have grammar as close to BA as possible,
but diametrically opposite intent. The Behavior Language for Embedded Systems with Software (BLESS)
would exactly represent behavior, that could be compiled down to machine code, precisely enough so formal
methods could be used to verify that the executed code would conform to its specification. Consequently,
a type system was created for to be consistent with both the AADL property types, and the AADL Data
Modeling Annex (AS5506/2 Annex B). Every production in BLESS was formally defined. Assertions could
be interspersed with behavior to be a proof outline, and used as a formal behavior interface specification
language. Thus BLESS began to diverge from BA.

(7) BLESS reconciles with BA (although there remain some differences) , but also formal semantics for BA
devised by Jean-Pierre Talpin for reasoning about system timing. Upon close inspection, it was realized
that both systems of formal semantics defined different aspects of the same thing, at different levels of ab-
straction. Merger of semantics required (mostly) changing labels and representation.6 The formal semantics
defined herein are not specific or restricted to any particular tools or formal methods, providing guidance as
to meaning of BLESS text such that other formal methods and tools can be applied consistently.

(8) BLESS specifications and behaviors can be attached to AADL models using an annex subclause. If applied
to component type specifications, an annex subclause applies to all the associated implementations. If a
component is extended, annex subclauses defined in an ancestor are applied to its descendants except
when the later defines its own annex subclause of the same kind.

(9) An annex subclause can be specified for a specific mode by appending an in modes clause.7 If the annex
subclause is not mode specific, then it must be unique and it applies for all modes. If no mode-specific

4BA intro (3)
5BA scope (1)
6JP
7AS5506C §12 Modes and Mode Transitions

SAE INTERNATIONAL AS5506/Z BLESS Annex v0.9 Page 5 of 159

annex subclauses apply to a mode, then the behavior is undefined.8 The foregoing applies to all AADL
annex sublanguages, not just the three defined by this document.

(10) The arrival of events and event data on ports of a non-periodic thread is an external trigger for dispatching
the thread; it initiates a transition defined in the AADL core standard9. A transmission request (a.k.a. event)
on an outgoing port is an external trigger to the state transition system of a virtual bus or bus. Dispatch
conditions are specified in terms of external triggers via event port, event data port, or time out. Dispatch
does not depend on the input value, which can only impact the action following the dispatch.

(11) The Behavior Specification of a component may access a shared data component made accessible
through a requires data access feature. The current data value of such shared data component available to
the Behavior Specification is determined at the time of access.

(12) Grammar productions follow AS5506C with the exception of literal symbols.10 The standard way of writing
literals in bold works fine for reserved words, but can be hard to see for symbols. To make literal symbols in
grammar productions easier to see, they have been colored purple. Listings of examples have reserved
words from AADL in red, and those new to BLESS in blue. There are a few exceptions, and some of the
special symbols in BLESS are also blue.

8Best never to have behavior undefined in possible modes; explicitly state is does nothing in modes when not active.
9AS5506C §5.4.1

10AS5506C §1.5 Method of Description and Syntax Notation

Contents

Z.1 Scope 12

Z.2 Overview of BLESS Concepts 14

Z.3 Behavior Specification 17
Z.3.1 Component Behavior . 18
Z.3.2 Behavior States . 19
Z.3.3 Variables . 22
Z.3.4 Transitions . 24
Z.3.5 Execute Condition . 26
Z.3.6 Internal Conditions . 27
Z.3.7 Modal Conditions . 27
Z.3.8 Synchronization . 28

Z.4 Thread Dispatch 29
Z.4.1 Dispatch Condition . 29
Z.4.2 Timeout Dispatch . 32
Z.4.3 abort and stop events . 33
Z.4.4 Thread Providing Subprogram Dispatch . 35

Z.5 Component Interaction 36
Z.5.1 Communication Action . 36
Z.5.2 Freeze Port . 37
Z.5.3 In Event Ports . 38
Z.5.4 In Data Ports . 38
Z.5.5 In Event Data Ports . 39
Z.5.6 Concurrency Control . 42
Z.5.7 Out Ports . 43
Z.5.8 Subprogram Invocation . 44

Z.6 Action 47

6

SAE INTERNATIONAL AS5506/Z BLESS Annex v0.9 Page 7 of 159

Z.6.1 Behavior Actions . 47
Z.6.2 Asserted Action . 47
Z.6.3 Action . 48
Z.6.4 Basic Actions . 48

Z.6.4.1 Skip . 49
Z.6.4.2 Assignment . 49
Z.6.4.3 Simultaneous Assignment . 50
Z.6.4.4 Computation Action . 51
Z.6.4.5 Issue Exception . 52

Z.6.5 Sequential Composition . 52
Z.6.6 Concurrent Composition . 53
Z.6.7 Alternative . 55
Z.6.8 Behavior Action Block . 57
Z.6.9 Forall . 59
Z.6.10 Loops . 60

Z.6.10.1 While Loop . 61
Z.6.10.2 For Loop . 62
Z.6.10.3 Do-Until Loop . 63

Z.6.11 Exception Handling . 63
Z.6.12 Locking Actions . 64
Z.6.13 Combinable Operations . 65

Z.6.13.1 Fetch-Add . 66
Z.6.13.2 Fetch-And Fetch-Or Fetch-Xor . 68
Z.6.13.3 Swap . 69

Z.7 Behavior Expression 70
Z.7.1 Value . 70
Z.7.2 Value Constant . 71

Z.7.2.1 Property Constant . 71
Z.7.2.2 Property Reference . 71

Z.7.3 Name . 72
Z.7.4 Expression . 73
Z.7.5 Subexpression . 75
Z.7.6 Conditional Expression . 75
Z.7.7 Case Expression . 76
Z.7.8 Function Invocation . 77
Z.7.9 Port Value . 78

Z.8 Type 80
Z.8.1 Ideal Types . 80
Z.8.2 Types are Sets . 81
Z.8.3 BLESS Type Grammar . 81
Z.8.4 Data Components as Types . 82
Z.8.5 Enumeration Type . 82
Z.8.6 Number Type . 83
Z.8.7 Array Type . 85

Contents Contents

SAE INTERNATIONAL AS5506/Z BLESS Annex v0.9 Page 8 of 159

Z.8.8 Record Type . 86
Z.8.9 Variant Type . 87
Z.8.10 Type Inclusion Rules . 88
Z.8.11 Type Rules for Expressions . 90

Z.9 Assertion 92
Z.9.1 Assertion Annex Library . 92
Z.9.2 Assertion . 93

Z.9.2.1 Formal Assertion Parameter . 93
Z.9.2.2 Assertion-Predicate . 94
Z.9.2.3 Assertion-Function . 95
Z.9.2.4 Assertion-Enumeration . 95

Z.9.3 Predicate . 96
Z.9.3.1 Subpredicate . 97
Z.9.3.2 Timed Predicate . 97
Z.9.3.3 Time-Expression . 98
Z.9.3.4 Period-Shift . 99
Z.9.3.5 Predicate Invocation . 100
Z.9.3.6 Predicate Relations . 101
Z.9.3.7 Parenthesized Predicate . 102
Z.9.3.8 Universal Quantification . 102
Z.9.3.9 Existential Quantification . 103
Z.9.3.10 Event . 103

Z.9.4 Assertion-Expression . 104
Z.9.4.1 Timed Expression . 106
Z.9.4.2 Parenthesized Assertion Expression . 106
Z.9.4.3 Assertion-Value . 107
Z.9.4.4 Conditional Assertion Expression . 107
Z.9.4.5 Conditional Assertion Function . 107
Z.9.4.6 Assertion-Function Invocation . 108
Z.9.4.7 Assertion-Enumeration Invocation . 109

Z.10Subprogram 112
Z.10.1 Subprogram Behavior . 112
Z.10.2 Subprogram Basic Actions . 114
Z.10.3 Value for Subprograms . 114

1 Appendix: Mathematics 115
1.1 Sets . 115
1.2 Tuples . 116
1.3 Relations . 117
1.4 Functions . 118
1.5 Sequences . 119
1.6 Strings . 119
1.7 Partial Orders . 119
1.8 Graphs . 120

Contents Contents

SAE INTERNATIONAL AS5506/Z BLESS Annex v0.9 Page 9 of 159

1.9 Lattices . 120
1.10 Meaning . 121
1.11 Time . 122
1.12 Values . 122
1.13 States . 123

1.13.1 Lattice States . 123
1.13.2 Behavior States . 124

1.14 Arithmetic . 124
1.15 Logic . 124
1.16 Computation ≡ Satisfaction . 125
1.17 Clock . 126
1.18 Timed Formula . 126
1.19 Automata . 127
1.20 Synchronous Product . 128
1.21 Small Step . 129
1.22 Big Step . 129
1.23 Trace . 129

2 Appendix: Lexicon 130
2.1 Character Set . 130
2.2 Lexical Elements, Separators, and Delimiters . 131
2.3 Identifiers . 132
2.4 Numeric Literals . 133

2.4.1 Decimal Literals . 133
2.4.2 Based Literals . 133
2.4.3 Rational Literals . 134
2.4.4 Complex Literals . 134

2.5 String Literals . 134
2.6 Comments . 134

3 Appendix: Package and Properties 136

4 Appendix: Alphabetized Grammar 139

Index 153

Contents Contents

List of Figures

Z.6.1 Behavior Action Block Lattice . 58
Z.6.2 Single Fetch-Add . 66
Z.6.3 Two Fetch-Adds . 67
Z.6.4 Many Concurrent Fetch-Adds . 68

Z.10.1Subprogram Satisfying Lattice . 112

1.1 Generic Lattice . 120
1.3 Lattice Combinations . 121
1.2 Two Lattices . 121

10

List of Tables

Z.4.1 Dispatch Protocol-Trigger Compatibility . 31

Z.5.1 In Data Port AADL Runtime Service Call . 39
Z.5.2 In Event Data Port AADL Runtime Service Calls . 40
Z.5.3 Out Communication Actions . 43

Z.8.1 AADL and BLESS Type Equivalences . 80

1.1 Boolean Function Truth Table . 118

2.1 Special Character Names . 131

11

Chapter Z.1
Scope

(1) This document defines Architecture Analysis and Design Language (AADL) annex sublanguages to allow
behavior specifications to be attached to AADL components, superseding the previous Annex D, collectively
called ‘BAv2’:

• a reactive, state machine language called Behavior Specification, and

• a programming language for subprograms called Subprogram.

(2) Behavior Specification is meant to be an AADL annex sublanguage for thread and device compo-
nents that interact with other components through events on ports, and have indefinite lifetimes.

(3) Subprogram is meant to be an AADL annex sublanguage for subprogram components that are passively
invoked with input parameters, execute for a finite duration, returning output parameters upon termina-
tion.

(4) Both Behavior Specification and Subprogram allow insertion of optional non-executable assertions
defined in Chapter Z.9 Assertion. Assertions may be used as a behavior interface specification language
(BISL) or to express what is true about the program (or system) in states, or at points of execution. For-
mal semantics are defined as Hoare triples: if I know P is true (precondition), and I do S, then Q will be
true (postcondition). P and Q would be assertions, while S would be some action defined in Chapter Z.6
Action.

This document is organized into

Annex Z.1: Scope this chapter

Annex Z.2: Overview of Behavior Annex Concepts provides background and conceptual overview

Annex Z.3: Behavior Specification defines the syntax and semantics of the state automaton used for the
Behavior Specification annex subclause.1

1BA D.1(4)

12

SAE INTERNATIONAL AS5506/Z BLESS Annex v0.9 Page 13 of 159

Annex Z.4: Thread Dispatch defines the syntax and semantics of the dispatch condition language used
to specify the conditions for a thread dispatch that are a refinement of the default thread dispatch
conditions specified in the core AADL standard.2

Annex Z.5: Component Interaction defines the syntax and semantics of the interaction operations used
to specify the component interaction with other components through its port, subprogram, and data
access features.3

Annex Z.6: Action defines the syntax and semantics of the action language used to specify the transition
actions of the automaton.4

Annex Z.7: Expression defines the syntax and semantics of the expression language used in the various
parts of the behavior annex.5

Annex Z.8: Type defines the syntax and semantics of the type language which may be used in variable
declarations in lieu of data component names defined using the Data Modeling language.

Annex Z.9: Assertion defines the syntax and semantics of the assertion language which allows formal
statements of what is true about the system when events or data are received or issued by ports,
threads occupy states, during performance of an action, or always true (invariant) of a component.

Annex Z.10: Subprogram defines the restrictions of the action and expression languages for behaviors of
subprograms defined in Subprogram annex subclauses.

Appendix 1: Mathematics introduces all the mathematical concepts and notation used in this document.

Appendix 2: Lexicon defines the language elements used in this document, which are the same as the core
AADL in AS5506B.

Appendix ??: Language Subsets defines useful subsets of BAv2 for various purposes.

Appendix 3: Package and Properties describes the predeclared property sets and package defined for BAv2.

Appendix 4: Alphabetized Grammar provides a list of all grammar productions, in alphabetical order, with
links to where the production is defined.

2BA D.1(4)
3BA D.1(4)
4BA D.1(4)
5BA D.1(4)

Chapter Z.1. Scope

Chapter Z.2
Overview of BLESS Concepts

(1) The Behavior Specification annex is expressed as state transition systems with guards and actions.
The behaviors described in this annex must be seen as specifications of the actual behaviors: they can
therefore be non- deterministic. They are based on state variables whose evolution is specified by transitions
that can be characterized by conditions and actions. The action language can make use of all the visible
declarations that are described in the encompassing AADL specification. When such an annex is defined in
the scope of a component type declaration, then it applies as a default behavior to all the implementations
of that type.1

(2) The state transition system of a Behavior Specification consists of a collection of states and tran-
sitions between the states. The state automaton has one initial state, from which the automaton behavior
starts. The state automaton also has one (or more) final states. When this state is reached the behavior
is considered to have completed. The state automaton can have complete states that represent temporary
suspension of execution and resumption based on external trigger conditions. Finally, the state automaton
can have discrete states of execution behavior.2

(3) These state transition systems can be used to specify the sequential execution behavior of an AADL sub-
program, the dispatch, mode, input, and output behavior of AADL threads or devices, the protocol behavior
of AADL virtual buses and buses, the dynamic behavior of a process or system, etc. The behavior from
the initial state to a final state typically represents the execution behavior of a subprogram with one or more
return points.3

(4) The behavior of a component such as a sampling periodic thread or a thread processing commands, may
start in an initial state; initialize itself and suspend itself at a complete state; reactivate from the complete
state repeatedly based on time or the arrival of an external event or message; transitioning from the ini-
tial state to the first complete state, or between complete states may involve transitioning to intermediate

1BA D.2(1)
2BA D.2(2)
3BA D.2(3)

14

SAE INTERNATIONAL AS5506/Z BLESS Annex v0.9 Page 15 of 159

computational states; a termination request results in a transition to a final state.4

(5) The transitions of a state transition system specify behavior as a change of the current state from a source
state to a destination state. A condition determines whether a transition is taken, and an action is performed
when the condition evaluates to true. Transition priorities control the evaluation order to transition conditions,
thus, the transition to be taken if the conditions of multiple transitions hold; otherwise the transition choice
is non- deterministic. Transition conditions fall into two categories: conditions that affect the execution of
a thread based on external triggers (dispatch conditions); and conditions that model behavior within an
execution sequence of a thread, subprogram or other component (execution conditions) and are based on
input values from ports, shared data, parameters, and behavior variable values.5

(6) The timed dispatch protocol of the core AADL standard specifies a time out condition for dispatches relative
to the previous dispatch. The Behavior Specification allows the modeler to define dispatch time out
conditions relative to the previous completion as well as time out conditions on blocks of behavior actions.
Furthermore, the Behavior Specification allows modelers to specify what behavior is to occur when
such time outs occur.6

(7) When a component is specified in the core AADL model to have modes, then the
Behavior Specification supports the specification of mode-specific behavior.7

(8) A subprogram call is an external trigger to the state transition system of a subprogram. The arrival of events
and event data on ports of an non periodic thread is an external trigger for dispatching the thread; it initiates
a transition in the hybrid state automaton defined in the AADL core standard8 as well as the state transition
system of the Behavior Specification of the thread. The transmission request on an outgoing port
is an external trigger to the state transition system of a virtual bus or bus. Dispatch conditions are specified
in terms of external triggers via event port, event data port, calls received on provides subprogram access
features, or time out. Dispatch does not depend on the input value, which can only impact the action following
the dispatch.9

(9) External trigger conditions, consumption of input and generation of output must be consistent with the
input/output semantics of the core AADL standard. For example, if the core model specifies a subset
of the ports to be external dispatch triggers, then the external trigger condition can only specify con-
ditions on this subset. Similarly, additional ports can be specified in both the core model and in the
Behavior Specification to indicate that the port content is frozen at dispatch time. These two speci-
fications must be consistent.10

(10) Input on ports is frozen according to the semantics of the core AADL standard11 and made available to the
application Behavior Specification in the form of a port variable. Newly arriving data, events, and
event data do not affect the content of the port variable. In the case of a data port the current value at input
freeze time is made available. In the case of event ports and event data ports the port queue content is
handled according to the specified dequeuing protocol. One, several, or all dequeued elements are made

4BA D.2(4)
5BA D.2(5)
6BA D.2(6)
7BA D.2(7)
8AS5506B §5.4.1 Thread States and Actions
9BA D.2(8)

10BA D.2(9)
11AS5506B §8.3.2 Port Input and Output Timing

Chapter Z.2. Overview of BLESS Concepts

SAE INTERNATIONAL AS5506/Z BLESS Annex v0.9 Page 16 of 159

available to the Behavior Specification.12

(11) The Behavior Specification of a component may access a shared data component made accessible
through a requires data access feature. The current data value of such shared data component available to
the Behavior Specification is determined at the time of access.13

12BA D.2(10)
13BA D.2(11)

Chapter Z.2. Overview of BLESS Concepts

Chapter Z.3
Behavior Specification

(1) Behavior specifications can be attached to any AADL component types and component implementations
using an annex subclause1 with label Behavior Specification.2� �
annex Behavior_Specification {** . . . **};� �

(2) When defined within component type specifications, it represents behavior common to all the associated
implementations. If a component type or implementation is extended, behavior annex subclauses defined
in the ancestor are applied to the descendent except if the later defines its own behavior annex subclause.3

However, AS5506B §5.4 Threads, defines standard behavior for thread scheduling and interaction. Any
component with a behavior specification must conform to the standard for threads, regardless of its compo-
nent classifier. Therefore, references to ‘thread’ should be considered applicable to any component with a
behavior specification annex subclause.

(3) A behavior annex subclause may be interpreted as a refinement of a call sequence section in a thread or
subprogram component implementation. If both a call sequence section and a behavior annex subclause
with subprogram call actions are defined for the same component implementation, then all the subprogram
calls specified in the former must be reflected in the latter, although the call order may differ.45

(4) Mode-specific behavior by appending an annex subclause with an in modes clause.6 Alternatively, a mode
can be reflected by a complete state of the same name in the Behavior Specification and mode transition
behavior can be modeled as a transition out of such a complete state whose condition identifies the event
port named in the mode transition, if specified in the core AADL model.7

1BA D.3(1)
2Implementations may also accept annex labels BAv2 or BLESS equivalently.
3BA D.3(1)
4BA D.3(22)
5Reconciliation: call sequence
6AS5506B §12 Modes and Mode Transitions
7BA D.3(3)

17

SAE INTERNATIONAL AS5506/Z BLESS Annex v0.9 Page 18 of 159

Z.3.1 Component Behavior

(1) Component behavior is defined by a state transition system. A state transition system has a set of states,
a set of local variables some of which may have initial values, and a set of transitions. The transitions of a
state transition system specify behavior as a change of the current state from a source state to a destination
state.

(2) Component behaviors may have an assert clause listing labelled assertions to be used by other asser-
tions.

(3) Component behaviors may have an invariant clause that must be true of every state.

Grammar8 9

behavior_annex ::=
[assert { assertion }+]
[invariant assertion]
[variables]
states { behavior_state }+
[transitions]

Legality Rule

(L1) Component behaviors must have at least two states (initial and final) and at least one transi-
tion.10

Naming Rule

(N1) The variable, state, and transition identifiers must be unique within an annex subclause, and may not also be
data subcomponents, component features, or mode identifiers–except for complete state identifiers which
may be mode identifiers.11

Consistency Rules

(C1) If a component type or implementation is extended, behavior specification defined in the ancestor are applied
to the descendent except if the later defines its own behavior specification.12

(C2) A behavior specification of a subcomponent overrides the behavior specification of its containing component
if they conflict.13

Semantics

(S1) A Behavior Sepcification defines an automaton (Appendix 1.19), A, as behavior for the component
(usually a thread) which contains it in an annex subclause, A = (S A, s0,VA, PA,TA,CA). Its states, S A are
defined in the states section having unique initial state s0. Its persistent variables, VA are defined in the
variables section. Its ports, PA are defined by its containing component. Its transitions, TA are defined in

8BLESS Differs from BA: assert and invariant sections
9BLESS Differs from BA: mandatory states keyword

10BA D.3(L1)
11BA D.3(N1)
12BA D.3(C1)
13BA D.3(C2)

Chapter Z.3. Behavior Specification Z.3.1. Component Behavior

SAE INTERNATIONAL AS5506/Z BLESS Annex v0.9 Page 19 of 159

the transitions section. Its constraints, CA, are defined in . . . , denoted by multi-sorted logical formula
FA.1415

Z.3.2 Behavior States

(1) The states section declares all the states of the automaton. Some states may be qualified as initial
state, final state, or complete state, or combinations thereof. A state without qualification will be referred
to as execution state. A behavior automaton starts from an initial state and terminates in a final state.16 A
behavior state may have an assertion that holds when that state is current.

(2) The core AADL standard defines runtime execution states for threads.17 These states include an initial state
(thread halted), a complete state (awaiting dispatch,) and a final state (stopped thread).

Grammar
behavior_state ::=

behavior_state_identifier : [initial] [complete] [final] state
[assertion] ; 18 19

(3) The behavior specification of components other than subprograms consists of an initial state, one or more
final states, one or more complete states, and zero or more execution states. A transition out of the initial
state is triggered by the initialize action defined in the core AADL standard. Execution states may be used
to represent intermediate initialization steps. Upon completion of initialization a complete state is reached.
In a behavior specification, the initial state can be a complete state (i.e. an initial complete state). Such
a state is an implicit superposition of two states, an initial state and a complete state, connected by an
implicit transition. This implicit transition, from the implicit initial state towards the implicit complete state,
is triggered by the initialize action defined in the core standard. No condition can be associated to this
implicit transition. No other action than the initialization action defined in the core standard (i.e. call to the
Initialize Entrypoint as defined by a property in the core language) can be associated to the implicit
transition. Note that entering (resp. exiting) an initial complete state stands for entering (resp. exiting) the
implicit complete state. This means that no transition can reach the implicit initial state.20

(4) In the case of subprograms, the automaton consists of one initial state representing the starting point
of a call, zero or more intermediate execution states, and one final state. A final state represents the
completion of a call. The complete state is not used in behavior specifications of subprograms.21

(5) When a component has modes it may also have a separate behavior annex subclause for each mode. In
this case, a mode transition results in a transition from the complete state of the current mode behavior
automaton to the initial state of the behavior automaton of the new mode.22

14JP
15Constraints such as CA do not seem to have grammar for them.
16BA D.3(8)
17AS5506B §5.4.1 Thread States and Actions
18BLESS Differs from BA: single state identifier allowed
19BLESS Differs from BA: states may have assertions
20BA D.3(24)
21BA D.3(9)
22BA D.3(13)

Chapter Z.3. Behavior Specification Z.3.2. Behavior States

SAE INTERNATIONAL AS5506/Z BLESS Annex v0.9 Page 20 of 159

(6) At least one state must be labeled final. There may be no transitions from a final state (unless it’s also a
complete state). The final state may be entered via a normal transition, abort transition, stop transition,
or invocation of the component’s Finalize Entrypoint.23 A state that is qualified as final, and is not at
the same time initial or complete, cannot accept outgoing transitions. If the purpose of the behavior
annex is to provide a specification of the intended behavior of a component, then the use of several final
states is allowed. Otherwise, if the purpose is to provide a deterministic representation of the implementation
of the internal behavior of the component, then only one final state must be defined.24

(7) Entering a complete state suspends the component until its next dispatch. Reaching a complete state
can be interpreted as calling the Await Dispatch run-time service. Thus a component is suspended if it
performs a transition to a complete state, after having executed the action associated to the transition. The
next dispatch will restart the thread from that state.25

(8) Execution states are transitory allowing computations upon dispatch to be subdivided into steps. From every
execute state there must be at least one transition leaving that state with an enabled transition condition.
Upon dispatch, a finite number of execute states may occur before entering a complete or final state.

(9) Upon completion of initialization a complete state is reached starting from the initial state, and perhaps
a finite number of execution states.

(10) In a behavior specification, the initial state can be a complete state (i.e. an initial complete
state). Such a state is an implicit superposition of two states - an initial state and a complete state -
connected by an implicit transition. This implicit transition from the implicit initial state towards the implicit
complete state - is triggered by the initialize action defined in the core standard. No condition can be asso-
ciated to this implicit transition. No other action than the initialization action defined in the core standard (i.e.
call to the Initialize Entrypoint as defined by a property in the core language) can be associated
to the implicit transition. Note that entering (resp. exiting) an initial complete state stands for entering (resp.
exiting) the implicit complete state.26 This means that no transition can reach the implicit initial state.

(11) An initial state can be a complete state and a final state as well (i.e. an final complete state). Such
a state is an implicit superposition of three states an initial state, a complete state, and a final
state - connected by two implicit transitions. The first transition, from the implicit initial state towards the
implicit complete state, can only be triggered by the initialization action as defined in the core standard. The
second transition, from the implicit complete state and towards the implicit final state, can only be triggered
by the reception of a stop event. Note that exiting (respectively entering) an initial final complete state
stands for exiting (resp. entering) the implicit complete state. No other action than the initialization action
(call to the initialize entrypoint as defined by a property in the core language) can be associated to the first
implicit transition. No other action than the finalization action (represented by the finalize entrypoint property
from the core language) can be associated to the second implicit transition. No execution condition can be
associated to those two implicit transitions.27

Legality Rules

23AS5506B §5.4.1 Thread States and Actions
24BA D.3(12)
25BA D.3(12)
26BA D.4(7)
27BA D.4(8)

Chapter Z.3. Behavior Specification Z.3.2. Behavior States

SAE INTERNATIONAL AS5506/Z BLESS Annex v0.9 Page 21 of 159

(L1) A Behavior Specification component behavior annex specification must define one initial state. A Be-
havior Specification component behavior annex specification must define at least one final state.28

(L2) Transitions from an execute source, have execute conditions, which are boolean expressions evaluated by
the component.

(L3) Transitions from a complete source, have dispatch conditions, evaluated by the AADL runtime services.
29

(L4) Transitions from states that are final only (not also complete or initial) are not allowed.30

(L5) A behavior annex specification for a thread, device, and other components awaiting dispatch or awaiting
a mode transition, must define at least one complete state and one initial state. This may be the same
state.31

(L6) A behavior annex specification for threads and other components with initialization and finalization entrypoints
may explicitly model the initialization and finalization by including one initial state and one or more final
states.32

(L7) A behavior annex specification for a subprogram must not define any complete states.33

Consistency Rules

(C1) A Behavior Specification for a thread must be consistent with the core AADL semantics.34

(C2) If a component type or implementation is extended, behavior annex subclause defined in the ancestor are
applied to the descendent except if the later defines its own behavior annex subclause.35

(C3) A behavior annex subclause of a subcomponent overrides the behavior annex subclause of its containing
component if they conflict.36

(C4) The behavior annex state transition system must not remain blocked in an execution state. This means that
the logical disjunction of all the execute conditions associated with the transitions out of an execution state
must be true.37

(C5) If the behavior annex defines transitions from a complete state that represents a mode in the contain-
ing component, then the transition condition associated with these transitions must be consistent with the
corresponding mode transition triggers.3839

(C6) In behavior transitions, mode conditions can be used to describe mode transitions in any component classi-
fier, except those belonging to the category of threads and subprograms. In components of these categories,

28BA D.3(L1)
29BA D.3(L6), BA D.3(L7)
30BA D.3(L8)
31BA D.3(L3)
32BA D.3(L4)
33BA D.3(L2)
34AS5506B §5.4 Threads
35BA D.3(C1)
36BA D.3(C2)
37BA D.3(C3)
38AS5506B §12 Modes and Mode Transitions
39BA D.3(C4)

Chapter Z.3. Behavior Specification Z.3.2. Behavior States

SAE INTERNATIONAL AS5506/Z BLESS Annex v0.9 Page 22 of 159

execute conditions and/or dispatch conditions should be used to describe behavior transitions.40

Semantics

(S1) Entering a complete suspends execution until next dispatch, and sends all pending outputs.

(S2) Where S t is the behavior state of the component at time t, i is a satisfying interval, s is a behavior state, d is
a dispatch condition, and A is an assertion:

Mi~ s initial state; � ≡ S start(i) = s
(the initial state is the state at the start of the interval)
Mi~ s final state; � ≡ S end(i) = s
(the final state is the state at the end of the interval)
Mi~ s complete state; � ≡ ∀t ∈ i | (S t = s)→ ¬Mt~d� ∧ suspended(t)
(for all time, component is suspended and the dispatch condition is false when in a complete state)
Mi~ s <<A>> state; � ≡ ∀t ∈ i | (S t = s)→ Mt~A�
(for all time, when in a state, its assertion is true)

Example� �
states

start : initial state;
fill : complete state

<<SpO2_INV() and (num_samples<#PulseOx_Properties::Num_Trending_Samples)>>;
check : state;
run : complete state;
halt : final state; --normal termination
fail : final state; --error termination� �

Z.3.3 Variables

(1) A variables clause declares identifiers that represent either local behavior variables in the scope of the
current annex subclause, or a reference to an external data component. Variables can be used to keep track
of intermediate results within the scope of the annex subclause. They may hold the values of out parameters
on subprogram calls to be made available as parameter values to other calls, as output through enclosing
out parameters and ports, or as value to be written to a data component in the AADL specification. They
can also be used to hold input from incoming port queues or values read from data components in the AADL
specification.41 Values of variables are persistent across the various invocations of the same behavior annex
subclause.42 43

Grammar

variables ::= variables { behavior_variable }+
40BA D.3(C5)
41BA D.3(6)
42BLESS Differs from BA: variable persistence
43BLESS Differs from BA: variables have no property associations

Chapter Z.3. Behavior Specification Z.3.3. Variables

SAE INTERNATIONAL AS5506/Z BLESS Annex v0.9 Page 23 of 159

behavior_variable ::=
local_variable_declarator { , local_variable_declarator }* :
[modifier] type [:= value_constant] [assertion] ; 44 45 46

declarator ::= identifier { array_size }*
array_size ::= [natural_value_constant]

modifier ::= nonvolatile | constant | shared | spread | final

(2) Variables that retain state when the system is powered off are nonvolatile. Variables oxymoronically-declared
to be constant may not be assigned except during initialization. Targets of combinable operations must be
declared shared. Arrays whose concurrent access is controlled using combinable operations are declared
spread, as in spread across memory banks to minimize bank conflict on concurrent accesses.47 Variables
that may only be assigned once are labeled final.

(3) Behavior variable declarations can indicate that a requires data access is shared. Only shared variables
may be targets of combinable operations.

Legality Rules

(L1) Variables may have initialization expressions.

(L2) Referenced external data components must be requires data access features of the component.48

(L3) Variables labeled final may only be assigned once.

(L4) Variables labeled constant may not be assigned values except by their declaration.

Semantics

(S1) Where v is a behavior variable identifier, T is a type, e is an expression, and d is a data component identi-
fier:

M~ variables v:T; � ≡ ∃v ∈ T (there exists a variable v of type T)

M~ variables v:T:=e; � ≡ ∃v ∈ T ∧Mstart(i)~v� = M~e�
(there exists a variable v of type T with a value of e at the beginning of the interval)

Example� �
variables

nts : constant integer:=#PulseOx_Properties::Num_Trending_Samples;
spo2 : array [1 ..nts] of PulseOx_Types::SpO2:=0; --holds SpO2 history
spo2_nxt : array [1 ..nts] of PulseOx_Types::SpO2:=0;
num_samples : integer:=0; --counts samples while filling� �

44BLESS Differs from BA: type more general
45BLESS Differs from BA: has variable assertion
46BLESS Differs from BA: no variable properties
47If you’re not seeking speed-up of computation via concurrent execution, you won’t need shared or spread.
48AS5506B §8.6 Data Component Access

Chapter Z.3. Behavior Specification Z.3.3. Variables

SAE INTERNATIONAL AS5506/Z BLESS Annex v0.9 Page 24 of 159

Z.3.4 Transitions

(1) In a Behavior Specification, transitions define dynamic behavior. When the component’s current
state is one of the source states of a particular transition, and the condition for transition evaluates to true,
the current state will become the destination state after an action (if supplied) is performed. A transition’s
Assertion, if supplied, is invariant during the transition.

(2) A transition may be identified by a label. The label contains a transition identifier and an optional priority
number. Transition priorities control the evaluation order of transition guards.49 The evaluation order of two
transitions with the same priority is non-deterministic. Transitions with no specified priority have the lowest
priority.50

(3) Actions can be performed by a transition before entry of the destination state. If a transition is enabled,
the actions are performed and then the state specified as the destination of the transition becomes the new
current state.51 52

Grammar

transitions ::= transitions { behavior_transition }+
behavior_transition ::=

[behavior_transition_label :]
source_state_identifier { , source_state_identifier }*
-[[transition_condition]]-> destination_state_identifier

[{ [behavior_actions] }] [assertion] ; 53

behavior_transition_label ::=
transition_identifier [[priority_natural_literal]]

transition_condition ::=
dispatch_condition | execute_condition
| mode_condition | internal_condition 54

(4) When the source state of a transition is a state where the component is waiting for dispatch, and if its dispatch
protocol is not periodic, then the condition is a dispatch condition that specifies the triggering events in terms
of event port, event data port, calls received on provides subprogram access features, or time out. Otherwise,
when the source state is an execute state of the component, the condition is an execute condition on state
variables and received input values.

(5) The core AADL standard defines dispatch conditions for threads in terms of a disjunction of trigger conditions
as result of arrival of events or event data on incoming ports of subprogram access features. A subset of
ports involved in the triggering of a dispatch may be specified through the Dispatch Trigger property.
The behavior specification can refine this dispatch condition into a Boolean condition that is associated with
a transition out of a complete state.55

49Reconciliation: transition priority
50BA D.3(19)
51Reconciliation: behavior action block
52BA D.3(20)
53BLESS Differs from BA: transitions may have assertions
54BLESS Differs from BA: mode instead of external condition
55BA D.3(26)

Chapter Z.3. Behavior Specification Z.3.4. Transitions

SAE INTERNATIONAL AS5506/Z BLESS Annex v0.9 Page 25 of 159

(6) A dispatch trigger may result in a transition out of a complete state and to one of the states defined in the
Behavior Specification (either an execution state or a complete state). A dispatch trigger can be the
arrival of input on ports, a subprogram call initiated by another thread, or a timed event (periodic dispatch
or timeout). Reaching a complete state can be interpreted as calling the Await Dispatch run-time
service. Thus a component is suspended if it performs a transition to a complete state, after having executed
the action associated to the transition. The next dispatch will restart the thread from that state.56

(7) When the Dispatch Protocol property is timed or hybrid, the value of the time out dispatch condition is
given by the Period property of the component.57

(8) An empty transition condition is equivalent to a condition that is always true.58

Legality Rule

(L1) A behavior specification for threads and other components must have one initial state and one or more final
states.59

(L2) Behavior transitions having Assertions must have labels.

(L3) Transitions from states that are final only are not allowed.60

(L4) A behavior specification for a thread, device, and other components that can be suspended awaiting dispatch
or awaiting a mode transition, must define at least one complete state and one initial state. This may be the
same state.61

Consistency Rules

(C1) The state transition system must not remain blocked in an execution state. This means that the logical
disjunction of all the execute conditions associated with the transitions out of an execution state must be
true.62

(C2) If the behavior specification defines transitions from a complete state that represents a mode in the containing
component, then the transition condition associated with these transitions must be consistent with
the corresponding
mode transition triggers.6364

Semantics

(S1) A behavior transition defines multiple transitions (s,Vs, IA, g, d,Vd,OA, f) ∈ TA of automaton A, be-
cause there are many possible input values, variable valuations, and output values for a transition from the
source state to the destination state (Annex 1.19). The transition only occurs when the automaton occupies
the source state transition condition is true, which may be an execute condition if the source state
is an execution state, or a dispatch condition if the source state is a complete state.65

56BA D.3(27)
57BA D.3(28)
58BA D.3(N2)
59BA D.3(L3)
60BA D.3(L8)
61BA D.3(L8)
62BA D.3(C3)
63BA D.3(C3)
64AS5506B 12 Modes and Mode Transitions
65JP

Chapter Z.3. Behavior Specification Z.3.4. Transitions

SAE INTERNATIONAL AS5506/Z BLESS Annex v0.9 Page 26 of 159

(S2) The behavior transition label, if present, defines a label, m, which represents the clock (An-
nex1.17) for the transition, m̂, when the transition occurs. For transition m:s-[g]-d;, its clock is m̂⇔
(s and g).66

Example� �
transitions

sptt0: start-[]->fill{};
sptt1: fill-[on dispatch]->check { . . . };
sptt2a: check-[num_samples<#PulseOx_Properties::Num_Trending_Samples]->fill

{(spo2’,num_samples’:=spo2,num_samples)};
sptt2b: check-[num_samples=#PulseOx_Properties::Num_Trending_Samples]->run

{(spo2’,num_samples’:=spo2,num_samples)};
sptt2c: check-[num_samples>#PulseOx_Properties::Num_Trending_Samples]->fail{};� �

Z.3.5 Execute Condition

(1) Any transition leaving an execute state must have an execute condition.67 Execute conditions are boolean
expressions that may only contain references visible within the component, such as ports and local vari-
ables.

execute_condition ::= boolean_expression_or_relation | timeout | otherwise

Legality Rule

(L1) Any transition with an execute state as its source must have an execute condition, or nothing which is the
same as true .

Semantics

(S1) Where s and d are behavior states in S with Assertions As and Ad,

states . . . s:state <<As>>; d:state <<Ad>>; . . .

S start(i) is the behavior state at time start(i), S end(i) is the behavior state at time end(i), b is a behavior condition,
w is an asserted action, C is an Assertion, and i is a satisfying interval:

Mi~ transitions s-[b]->d � ≡
S start(i) = s,
S end(i) = d,
Mstart(i)~As ∧ b�→ Mend(i)~Ad�

(a transition from s to d on condition b over a subinterval i, must start in s with As, end in d with Ad, and the
conjunction of the condition b and As at the beginning, must imply Ad at the end)

Mi~ transitions s-[b]->d {w} � ≡
S start(i) = s,
S end(i) = d,
Mstart(i)~As ∧ b�→ wp(w,Mend(i)~Ad�)

(a transition from s to d on condition b with action w over a subinterval i, must start in s with As, end in d with
Ad, and the conjunction of the condition b and As at the beginning, must imply the weakest precondition of w

66JP
67BA D.3(18)

Chapter Z.3. Behavior Specification Z.3.5. Execute Condition

SAE INTERNATIONAL AS5506/Z BLESS Annex v0.9 Page 27 of 159

and Ad at the end)

Mi~ transitions s-[b]->d {w} <<C>> � ≡

S start(i) = s,
S end(i) = d,
Mstart(i)~As ∧ b�→ wp(w,Mend(i)~Ad�),
Mi~C�

(a transition from s to d on condition b with action w and Assertion C over a subinterval i, must start in s with
As, end in d with Ad, and the conjunction of the condition b and As at the beginning, must imply the weakest
precondition of w and Ad at the end; the Assertion C must be true throughout i)68

(S2) Semantics of in data and in event data ports are defined in §?? and §?? respectively.

Z.3.6 Internal Conditions

(1) Internal events may be used to represent interactions among annexes. In the scope of a behavior annex
subclause, an internal feature may be used to describe under which circumstances an event is sent from
either an internal event port or an internal event data port .69

Grammar
internal_condition ::= on internal

internal_port_name { or internal_port_name }*

Z.3.7 Modal Conditions

(1) The function in mode tests whether the current local mode is among the identifiers listed. The mode
identifiers must be among those of the behavior annex subclauses in modes clause, if any, and the modes
of its thread component.

(2) When the state machine is used to define mode transitions, complete state identifiers match mode identifiers
for the component. Leaving a mode-state requires a transition with a mode condition which may be triggered
by an event (data) arriving or leaving an event (data) port of the component or one of its subcomponents.70

Grammar

mode_condition ::= on trigger_logical_expression71

trigger_logical_expression ::= event_trigger { logical_operator event_trigger }*
68The Assertion in behavior transitions between the action and the terminating semicolon was changed from a post-condition to an invariant

that holds during the transition. Previously, during execution of an action, a component was in no state. In no state, none of the state Assertions
necessarily holds. This made it impossible to write a component invariant that was always true. By defining transitions’ Assertions to hold
during execution of its transition, the intrinsic component invariant becomes the disjunction of all state and transition Assertions.

69BA D.5(17)
70BLESS Differs from BA: mode trigger
71BLESS Differs from BA: mode instead of external condition

Chapter Z.3. Behavior Specification Z.3.6. Internal Conditions

SAE INTERNATIONAL AS5506/Z BLESS Annex v0.9 Page 28 of 159

event_trigger ::=
in_event_subcomponent_port_reference
| in_event_data_subcomponent_port_reference
| (trigger_logical_expression)

subcomponent_port_reference ::=
subcomponent_identifier { . subcomponent_identifier }*
. port_identifier 72

logical_operator ::= and | or | xor | and then | or else73 74

Naming Rule

(N1) If any complete state identifier is a mode identifier, then all complete state identifiers in that annex subclause
must also be mode identifiers.

Consistency Rules

(C1) Modal behavior must conform to AS5506B §12, Modes and Mode Transitions.75

(C2) If transitions from a complete state that represents a mode in the containing component, then the behav-
ior condition associated with these transitions must be consistent with the corresponding
mode transition triggers of a mode transition.767778

Z.3.8 Synchronization

(1) An automaton is said well synchronized iff all its transitions from one complete state to another can be
performed using one big step (Annex 1.22). If all series of transitions from one complete state to another in
an automaton do not use an output port twice or more, then the automaton is well synchronized. 79

(2) For a well-synchronized automaton, one can reduce the execution states introduced in the representation
of action sequences by substituting variable names by their definitions in the formula that use them. For
instance, {(s1, g1, s, v = u), (s, g2, s2, f 2,)} can be reduced as {(s1, g1 ∧ (g2[v/u]), s, v = u ∧ (f 2[v/u]))}. One
can also reduce action sequences and action sets by composing formulas representing independent actions.
For instance, {(s1, g1, s, p1 = v1), (s, g2, s2, p2 = v2)} can be reduced as {(s1, g1∧g2, s2, p1 = v1∧p2 = v2)} iff
p1 , p2, and so on. A well-synchronized automaton can be represented without execution states. 80

72BLESS Differs from BA: restricted to subcomponent port
73Reconciliation: cand→ and then
74Reconciliation: cor→ or else
75BA D.3(C4)
76BA D.4(C4)
77AS5506B §12 Modes and Mode Transitions
78Reconciliation: mode
79JP
80JP

Chapter Z.3. Behavior Specification Z.3.8. Synchronization

Chapter Z.4
Thread Dispatch

Z.4.1 Dispatch Condition

(1) Any transition leaving a complete state must have a dispatch condition that begins on dispatch. When
a component has Periodic dispatch protocol, no dispatch expression is needed. For components with
other dispatch protocols, a dispatch expression determines when a component is dispatched.

(2) A dispatch condition must be met to transition from a complete state.1 A dispatch condition determines
whether a transition is taken, and an action is performed when the condition evaluates to true. A dispatch
condition is a Boolean-valued expression (disjunction of conjunctions of dispatch triggers) that specifies the
logical combination of triggering events for the next dispatch. A dispatch trigger can be the arrival of an
event or event data on an event port or an event data port, the receipt of a call on a provided subprogram
access, or a timed event–either periodic dispatch or timeout). The ports used in the dispatch condition must
be consistent with the ports listed in the core AADL model as dispatch triggers.

(3) A dispatch trigger can be the arrival of events or event data on ports, calls on provides subprogram access
features, the stop event, and occurrence of dispatch related and completion related time outs.2

(4) Dispatch conditions must be evaluated by the run-time system, not the component, and must be insensitive
to component state. Dispatch conditions must not depend upon which complete state is being resumed
from, nor from persistent values of variables. Dispatch conditions must not consume events; dispatch con-
ditions must decide solely on event’s existence, not their data, nor queue depth. If no dispatch logical
expression is supplied, dispatch occurs upon the default dispatch condition defined for the component’s
Dispatch Protocol3 property.

(5) A dispatch condition may be absent (just on dispatch) indicating default dispatch at the end of the thread’s
period. Periodic dispatches are always considered to be implicit unconditional dispatch triggers on complete

1BA D.4(2)
2BA D.4(3)
3AS5506B §A.2 Predeclared Thread Properties

29

SAE INTERNATIONAL AS5506/Z BLESS Annex v0.9 Page 30 of 159

states and handled by dispatch conditions without dispatch trigger condition.4

(6) Dispatch conditions are evaluated to determine whether a dispatch occurs. If there are multiple outgoing
transitions, the dispatch condition (if present) is evaluated to determine which transition is taken. If multiple
transitions are eligible, then the priority value (Z.3.4) determines an evaluation ordering, otherwise one of
the eligible transitions is taken non-deterministically. The higher the priority value is, the higher the priority
of the transition is.5

(7) When the Dispatch Protocol property is Timed or Hybrid, the value of the time out dispatch condition
is given by the Period property of the component.6

Grammar
dispatch_condition ::=

on dispatch [dispatch_expression] [frozen frozen_ports]

dispatch_expression ::=
dispatch_conjunction { or dispatch_conjunction }*
| stop
| dispatch_relative_timeout_catch
| completion_relative_timeout_catch
| provides_subprogram_access_identifier

dispatch_conjunction ::= dispatch_trigger { and dispatch_trigger }*
dispatch_trigger ::=

in_event_port_name | in_event_data_port_name | port_event_timeout_catch7

(8) A dispatch trigger is an event which causes the dispatch condition to be evaluated. The value of a dispatch
condition is a boolean expression of dispatch triggers. Event arrival at either event ports or event data ports
causes a dispatch trigger referenced by the port’s identifier. The timeout dispatch trigger is covered in section
Z.4.2 Timeout Dispatch Trigger.

(9) All stop events are dispatch triggers, caused by arrival of an event on the implicit stop port , to model initiation
of finalization and transition from a complete state to the a state, possibly via one or more execution states. If
the core property finalize entrypoint is already specified8 then it can be used as an implicit finalization action,
otherwise it can be specified as action on transitions from complete states.9

(10) The core AADL standard defines which ports are implicitly frozen at dispatch time, i.e., port that actually
triggers a dispatch, or ports that do not trigger a dispatch. In the behavior annex subclause it is possible to
explicitly specify as part of the dispatch condition a list of additional ports that must also be frozen although
they do not take part to the dispatch condition. Otherwise, the port freeze action, >> can be used as a
transition action.10

Grammar
4BA D.4(4)
5BA D.3(27)
6BA D.3(28)
7BLESS Differs from BA: timeout as dispatch trigger
8AS5506B §5.4.1 Thread States and Actions
9BA D.4(6)

10BA D.4(1)

Chapter Z.4. Thread Dispatch Z.4.1. Dispatch Condition

SAE INTERNATIONAL AS5506/Z BLESS Annex v0.9 Page 31 of 159

frozen_ports ::= in_port_name { , in_port_name }*
Naming Rules

(N1) The incoming port identifier in the frozen port list must refer to incoming ports in the component type to which
the behavior annex subclause is associated.11

(N2) The incoming port identifiers and subprogram access feature identifiers that represent dispatch trigger events
must refer to the respective feature in the component type to which the behavior annex subclause is associ-
ated.12

Legality Rules

(L1) The specification of frozen ports in the dispatch condition must be consistent with that of the core AADL
model.13 14

(L2) Table Z.4.1 sums up the compatibility rules between the dispatch protocol property values defined in the core
standard and the dispatch trigger condition used in a behavior annex. This table is only relevant when the
property and the annex are applied to a component of the thread category.15

Table Z.4.1: Dispatch Protocol-Trigger Compatibility
dispatch trigger Periodic Sporadic Aperiodic Hybrid Timed

∅ (none) X X X
dispatch expression X X X X

Provides Subprogram Access X X X X
stop X X X X X

timeout (only) X

Consistency Rules

(C1) The specification of frozen ports in the dispatch condition must be consistent with that of the core AADL
model.16 17

Legality Rule

(L3) A behavior annex specification for a subprogram must not contain a dispatch condition in any of its transi-
tions.18

Semantics

(S1) Where i is an interval, p is an input event port identifier, e is an event, S is a state (the start node of a
satisfying lattice), and A, B, C, and D are dispatch triggers:

11BA D.4(N1)
12BA D.4(N2)
13BA D.3(L9)
14AS5506B §5.4.8 Runtime Support For Threads
15BA D.4(L1)
16BA D.3(L9)
17AS5506B §5.4.8 Runtime Support For Threads (although this section says nothing about frozen ports)
18BA D.3(L5)

Chapter Z.4. Thread Dispatch Z.4.1. Dispatch Condition

SAE INTERNATIONAL AS5506/Z BLESS Annex v0.9 Page 32 of 159

MS ~A and B� ≡ MS ~A� ∧MS ~B�
(dispatch condition may be conjunction of dispatch triggers)
MS ~(A and B) or (C and D)� ≡ (MS ~A� ∧MS ~B�) ∨ (MS ~C� ∧MS ~D�)
(dispatch condition may be disjunction of conjunctions of dispatch triggers)
MS ~ p � ≡ ∃e ∈ p
(the meaning of in event port identifier p is when an event exists at port p, it is a dispatch trigger)

(S2) Execution of a transition occurs when the component is suspended in the transition’s source state, its dispatch
expression is true, and no dispatch expression of transition leaving that state has been true since the time-
of-previous-suspension (tops). For a single transition R, leaving a complete state S , having dispatch
expression D,
R:S -[on dispatch D]->. . . ,
then R will be dispatched at time t:

Mt~dispatch(R)� ≡ Mt~S � ∧Mt~D� ∧ @ t2 ∈ {tops, , t} |Mt2~D�
(transition R will be dispatched at time t when the component is in state S at time t, dispatch expression D is
true at time t, and there was no time t2 since the time-of-previous-suspension tops in which the component
was dispatched)

(S3) When multiple transitions lease the same complete state, none of their dispatch conditions must be true
since the time-of-previous suspension. For transitions R having dispatch expression D, R2 having dispatch
expression D2, and R3 having dispatch expression D3, all having complete state S as source,
R:S -[on dispatch D]->. . . ,
R2:S -[on dispatch D2]->. . . ,
R3:S -[on dispatch D3]->. . . ,
then R will be dispatched at time t:

Mt~dispatch(R)� ≡ Mt~S � ∧Mt~D� ∧ @ t2 ∈ {tops, , t} | (Mt2~D ∨ D2 ∨ D3�)
(transition R will be dispatched at time t when the component is in state S at time t, dispatch expression D is
true at time t, and there was no time t2 since the time-of-previous-suspension tops in which the component
was dispatched for any transition leaving state S)

Z.4.2 Timeout Dispatch

(1) Timeout is a dispatch trigger that is raised after the specified amount of time since the last dispatch or the
last completion is expired. In the Timed dispatch protocol, the Timeout property specifies the timeout
value.19

Grammar

dispatch_relative_timeout_catch ::= timeout

completion_relative_timeout_catch ::= timeout behavior_time20

19BA D.4(5)
20BLESS Differs from BA: port list on port event timeout

Chapter Z.4. Thread Dispatch Z.4.2. Timeout Dispatch

SAE INTERNATIONAL AS5506/Z BLESS Annex v0.9 Page 33 of 159

(2) Timeouts may include a list of event port identifiers, in or out, data or not. An event, in or out, on a port in the
list resets and starts the timeout, regardless of component state. The component need not be in the source
state of the transition having a timeout dispatch trigger to reset/start the timeout. A timeout dispatch trigger
may include a port list. In this case, the behavior is as follows:2122

• an event was received or sent by a listed port begins, or resets, the timeout interval

• if no event was received or sent by a listed port during the timeout interval, a dispatch trigger occurs

Grammar
port_event_timeout_catch ::=

timeout (port_identifier { [or] port_identifier }*) behavior_time23

(3) A timeout dispatch trigger sans port list and behavior time is dispatch relative using the Period property for
its duration.24

(4) Disjunction(or) of port names is optional.

Naming Rule

(N1) A port identifier refers to either an in port or an in event port.

Legality Rule

(L1) The dispatch relative timeout catch condition must only be used for Timed threads, and must
be declared in only one outgoing transition of a complete state.25

Semantics

(S1) Where p1, p2, and p3 are event port identifiers, d is a duration that must either be a literal, or the name of an
AADL property of type Timing Properties::Time, and u is an AADL Properties:: Time Units
unit:

Mt~ timeout (p1 p2 p3)d u � ≡
Mnow−d~p1 ∨ p2 ∨ p3� ∧
@s ∈ {now − d, , now} |Ms~p1 ∨ p2 ∨ p3�

(the meaning of timeout is an event arrived, or was issued, at one of the listed ports (p1 p2 or p3), d time
previously, and no events arrived, or were issued, at any of the listed ports since then)

Z.4.3 abort and stop events

(1) AS5506B defines semantics for stop and abort events.26 A stop dispatch trigger occurs when a
component is requested to enter its component halted state through a stop request after completing the

21BA D.4(5)
22BLESS Differs from BA: timeout
23BLESS Differs from BA: or optional in port lists
24BA D.4(L2)
25BA D.4(L2)
26AS5506B §5.4 Threads, esp. Figure 5 Thread States and Actions.

Chapter Z.4. Thread Dispatch Z.4.3. abort and stop events

SAE INTERNATIONAL AS5506/Z BLESS Annex v0.9 Page 34 of 159

execution of a dispatch or while not part of the active mode. In this case, the component may execute a
Finalize Entrypoint before entering the component halted state.27

(2) An abort dispatch trigger occurs through an abort request to cause the component to immediately enter
the component halted state. For both stop and abort a final state will be entered, never to leave again.
The difference is that stop executes a Finalize Entrypoint to clean up before halting; that behavior
is the action of the stop transition.28

(3) In a behavior specification, a final state can be a complete state (i.e. a final complete state). Such a
state is an implicit superposition of two states a complete state and a final state - connected by an implicit
transition. This implicit transition from the implicit complete state towards the implicit final state can only
be triggered by the reception of a stop event. No other action than the finalization action (represented by
the Finalize Entrypoint property from the core language) can be associated to this implicit transition.
No execution condition can be associated to this implicit transition. Note that entering (respectively exiting)
a final complete state stands for entering (resp. exiting) the implicit complete state.29

(4) In a behavior specification, an initial state can be a complete state and a final state as well (i.e.
an initial final complete state). Such a state is an implicit superposition of three states an
initial state, a complete state, and a final state - connected by two implicit transitions. The first
transition, from the implicit initial state towards the implicit complete state, can only be triggered by the
initialization action as defined in the core standard. The second transition, from the implicit complete state
and towards the implicit final state, can only be triggered by the reception of a stop event. Note that exit-
ing (respectively entering) an initial final complete state stands for exiting (resp. entering) the im-
plicit complete state. No other action than the initialization action (call to the Initialize Entrypoint
as defined by a property in the core language) can be associated to the first implicit transition. No other
action than the finalization action (represented by the Finalize Entrypoint property from the core lan-
guage) can be associated to the second implicit transition. No execution condition can be associated to
those two implicit transitions.30

Naming Rules

(N1) The incoming port identifier in the frozen port list must refer to incoming ports in the component type to which
the behavior annex subclause is associated.31

(N2) The incoming port identifiers and subprogram access feature identifiers that represent dispatch trigger events
must refer to the respective feature in the component type to which the behavior annex subclause is associ-
ated.32

Legality Rules

(L1) stop transitions must have final states as destinations.

Semantics
27BA D.4(6)
28Both stop and abort will occur automatically, so only users that need to define some special behavior action at their occurrence will

use them.
29BA D.4(7)
30BA D.4(8)
31BA D.4(N1)
32BA D.4(N2)

Chapter Z.4. Thread Dispatch Z.4.3. abort and stop events

SAE INTERNATIONAL AS5506/Z BLESS Annex v0.9 Page 35 of 159

(S1) MS ~ stop � ≡ ∃e ∈ stop and there must be a sequence of zero or more, delay-free execute conditions
before reaching a final state.
(the meaning of stop is when an event exists at special port stop, it is a dispatch trigger)
MS ~ abort � ≡ immediate component halt
(the meaning of abort is halt immediately)33

Example

(5) This example specifies that the component should be dispatched if either an event arrives at port a, or events
have arrived for both ports c and d.� �
annex Behavior_Specification {**

states S1,S2:state; S3,S4:final state;
. . .
transitions
S1-[on dispatch a or (c and d)]->S2;
S1-[stop]->S3 {finalize action} ;
S2-[stop]->S3 {different finalize action} ;
S1-[abort]->S4 ; --no action, S4 is final for abort
. . .

**}� �
Z.4.4 Thread Providing Subprogram Dispatch

(1) Provides subprogram access features that are declared in a thread component type can act as a dispatch
triggers. The values of incoming parameters, if any, can then be used by naming the parameter within the
scope of the behavior annex.34

(2) The core AADL standard supports modeling of remote procedure calls through provides subprogram access
features on threads. The arrival of a call acts as a dispatch trigger to the thread. Calls are queued if the
thread has not completed a previous dispatch. By default the call is a synchronous call with the calling
thread being blocked, which corresponds to a synchronous Subprogram_Call_Type property.35 To
specify non-blocking calls, a semi-synchronous
Subprogram_Call_Type property must be applied to the subprogram.36

33AS5506B §5.4.1 Thread States and Actions (20) and Figure 5
34BA D.5(20)
35AS5506A 5.2
36BA D.5(21)

Chapter Z.4. Thread Dispatch Z.4.4. Thread Providing Subprogram Dispatch

Chapter Z.5
Component Interaction

(1) Threads can interact through shared data component implementations, connected ports and subprogram
calls. The AADL execution model defines the way queued event/data of a port are transferred to the thread
in order to be processed and when a component is dispatched.1

(2) Messages can be received by the component through declared features of the current component type. They
can be in or in out data ports; in or in out event ports; in or in out event data ports and in or in out parameters
of subprogram access. Event and event data ports are associated with queues.2

Z.5.1 Communication Action

(1) Communication actions provide interaction with other components. A communication action sends or re-
ceives values from ports.3 Actions of in ports and out ports are covered in following sections.

(2) Actions on ports consist of the input freeze action (p>>), the initiate send action with or without value
assignment (p!(v) or p!), and parameterless subprogram calls (sub()) or subprogram calls with
parameters
(sub(f1:a1, f2:a2, f3:a3)). Another form of component interaction is through reading and writing
of shared data components, which is expressed by the assignment action.4

Grammar
1BA D.5(1)
2BA D.5(2)
3Subprogram invocation is a basic action Z.6.4.
4BA D.6(10)

36

SAE INTERNATIONAL AS5506/Z BLESS Annex v0.9 Page 37 of 159

communication_action ::=
subprogram_invocation
| output_port_name ! [(expression)]
| input_port_name ? (target)
| frozen_input_port_name >>

port_name ::=
{ subcomponent_identifier . }* port_identifier [[natural_literal]]

target ::=
local_variable_name
| output_port_name
| data_component_reference

data_component_reference ::=
data_subcomponent_name { . data_subcomponent_name }*
| data_access_feature_name { . data_field }*
| data_access_feature_prototype_name { . data_field }*

data_field ::=
data_subcomponent_name
| data_access_feature_name
| data_access_feature_prototype_name

Semantics

(S1) Accessing data components outside of a thread break encapsulation of state, is therefore error-prone, and
thus stridently discouraged.

Z.5.2 Freeze Port

(1) The core language defines that input on ports is determined by default frozen at dispatch time, or at a time
specified by the Input Time property5 and initiated by a Receive Input service call6 in the source text.
From that point in time the input of the port during this execution is not affected by arrival of new data, events,
or event data until the next time input is frozen.7 8

(2) Freezing of input port content during execution requires consistency between the Input Time property in
the core model and the freeze input action, p>>. Similarly, initiating transmission of port output must be
consistent between the
Output Time property in the core model and the port output, p!.9

(3) Ports causing a dispatch event are implicitly frozen at the time specified by the Input Time property if the
property specifies a deterministic value. It is also possible to explicitly freeze additional ports if it is consistent
with their Input Time property. As long as it remains consistent with the Input Time property of a port,

5AS5506B §9.2.4 Port Communication Timing
6AS5506B §8.3.5 Runtime Support For Ports
7BA D.5(3)
8Reconciliation: >> freeze port
9BA D.5(6)

Chapter Z.5. Component Interaction Z.5.2. Freeze Port

SAE INTERNATIONAL AS5506/Z BLESS Annex v0.9 Page 38 of 159

an explicit call to the Receive Input service can be performed thanks to the frozen statement of the
dispatch condition. With the same consistency constraints with respect to the Input Time as a transition
action.10

Consistency Rules

(C1) The specification of frozen ports in the dispatch condition must be consistent with that of the core AADL
model.11

(C2) Freezing of input port content during execution requires consistency between the Input Time property in
the core model and the freeze input action (p>>) in the Behavior Specification.12 13

Semantics

(S1) An input freeze action p>> is represented by turning s into a complete state with T (g, s, d)[p>>] =

(s, g?p, true, d).1415

Z.5.3 In Event Ports

(1) Communication actions do not refer to in event port(s). Instead, an event arriving at an event port is a
dispatch trigger used in dispatch transition conditions leaving complete states. See Z.4.1 Dispatch Condition
for thread response to events arriving at an in event port.

Z.5.4 In Data Ports

(1) An in data port holds the most recent value sent to it. The port value may be explicitly assigned to a local
variable with a communication action, p?(v) , or used in an expression or execute transition conditions
(§Z.7.1 Value).

(2) The core language defines that data from data ports is made available to the application source code through
a port variable with the name of the port. If no new value is available since the previous freeze, the previous
value remains available and the variable is marked as not fresh. Freshness can be tested in the application
source code via service calls16.17

Semantics

(S1) For each in data port, r, in the context of interval (state lattice) i:18

10BA D.5(7)
11AS5506B §5.4.8
12BA D.5(6)
13BA D.5(C1)
14JP
15This doesn’t seem right. No new dispatch, just the value doesn’t change until completion. JP, please clarify.
16AS5506B §8.3.5 Runtime Support For Ports
17BA D.5(4)
18The interval i starts at Dispatch time and ends at Completion.

Chapter Z.5. Component Interaction Z.5.3. In Event Ports

SAE INTERNATIONAL AS5506/Z BLESS Annex v0.9 Page 39 of 159

Table Z.5.1: In Data Port AADL Runtime Service Call
Meaning Grammar Corresponding service call
read value p? Get Value and then Next Value
read into variable p?(var) Get Value

Mt~r?(v)� ≡ Mt~v� = Mt~r�
(the variable gets the value of the port at the instant of its evaluation, which because frozen is the value of
the port at dispatch)

(S2) To get data from an in data port, a transition read the value of the port and assigns it to the target variable.
T (s, g, d)[r?(v)] = (s, g, c, v = r).

Inference Rule

(S3) For an in data or in event data port p, having assertion P, and variable v

Port Input: [PI]
�P ∧ v = P� → �Q�
�P� p?(v)�Q�

Z.5.5 In Event Data Ports

(1) The complexity of in event data port behavior comes from its buffer. Unlike plain in data port
which reports the most recent value received, in event data port buffers all the values received
while waiting for dispatch, if any. Thus, the need for updated, count, and fresh to monitor the input
buffer.

Values of in event data port may be used in one of two ways:

p use current value in expression, don’t dequeue

p? use current value in expression, dequeue

p?(v) assign current value to variable, dequeue

(2) The core language defines that input on ports is determined by default at dispatch time, or at a time specified
by the Input Time property19 and initiated by a Receive Input service call20 in the source text.

(3) The core language defines that data from data ports are made available to the component in a port variable.21

Freshness of this data can be tested as a condition, p’fresh.22

(4) Event and event data ports have queues and the queues are processed as follows according to the core

19AS5506B §8.3.2 Port Input and Output Timing
20AS5506B §8.3.5 Runtime Support for Ports
21AS5506B §8.3.3 Port Queue Processing
22BA D.5(4)

Chapter Z.5. Component Interaction Z.5.5. In Event Data Ports

SAE INTERNATIONAL AS5506/Z BLESS Annex v0.9 Page 40 of 159

standard.23 24

• A Dequeue Protocol of OneItem makes one item available in a port variable and removes it from
the port queue. If the queue is empty the port variable content is considered not fresh.

• A Dequeue Protocol of AllItems removes all items from the port queue and places them into
a local port queue (local to the state transition system). The component input events of the transition
condition and the input actions of the transition action consume data elements from this local port
queue. Any data not consumed as part of a transition will be lost, when the local queue content is
overwritten with new input at the next execution.

• The Dequeue Protocol of MultipleItems determines the content of the port queue and makes
it available through the local port queue. In this case elements are removed from the queue as they
are consumed. Any elements not consumed remain in the queue and become available at the next
execution.

Table Z.5.2: In Event Data Port AADL Runtime Service Calls
Meaning Grammar Corresponding service call
freeze p>> Receive Input
test of updated p’updated Updated
get unread count p’count Get Count
test of freshness p’fresh Get Count > 0
read p Get Value
read and dequeue p? Get Value and then Next Value
read into variable and dequeue p?(var) Get Value and then Next Value

(5) Within a behavior annex subclause, the following constructs are available to get the status and the contents
of an input port p:25

• p can be used as a value and returns the most-recent (unless frozen) data stored in the port variable
if p is a non-empty data port or an event data port with the OneItem Dequeue Protocol using the
Get Value runtime service. The value cannot overwritten if the port direction is in out by writing
to it. It does not dequeue an event and p’count is not decremented. Applied to an empty data port,
p returns null.26

• p’count is equivalent to a call to the Get_Count runtime service: p’count returns the number
of elements available through the port variable. In the case of a data port its value is one, or zero if
no new value was received. In the case of an event port or event data port it is the number of frozen
elements. If it is strictly positive, pcount is decremented when an element is dequeued.27

• p’updated is equivalent to a call to the Updated runtime service. pupdated returns true if some
new values were received in port p since the last freeze of the port. Note that this operator is used

23AS5506B §8.3.3 Port Queue Processing
24BA D.5(5)
25BA D.5(9)
26Reconciliation: non-dequeued port
27BA D.5(9)

Chapter Z.5. Component Interaction Z.5.5. In Event Data Ports

SAE INTERNATIONAL AS5506/Z BLESS Annex v0.9 Page 41 of 159

to represent a call to the Updated service defined in the core AADL standard. This operation is
performed without freezing the port p.28

• p’fresh returns true if the port variable has been refreshed at the previous dispatch. p’fresh is
equivalent to the expression Get_Count > 0 . In the case of a data port, this means that it has
received a new value by the previous dispatch or freeze. In the case of an event data port this means
that one or more elements from the port queue were frozen and are available for processing by the
Behavior_Specification through p . If the port queue is empty at freeze time or the p?
operation is applied to a port variable with no remaining elements, the value is not considered fresh.29

• p? is equivalent to a call to the Get Value and Next Value runtime services: p? dequeues an
event or event data from a non empty event port queue. If it is strictly positive, the value of p’count
is decremented. In the case of an event data port the new first element is available in the port variable.

• When used in a behavior action, p?(v) dequeues an event from a non-empty event port queue,
returning its value, and p’count is decremented using the Get Value and Next Value runtime
services. Each use of p?(v) dequeues another event, returns its value, and decrements p’count.
Applied to an empty event data port queue, p?(v) causes exception30 to be thrown.31

• p>> is equivalent to a call to the Receive Input runtime service, freezing the value so that subse-
quent references to p in the same dispatch receive the same value.32

Semantics

(S1) For each in event data port, p,

p Mi~p� ≡ Get Value
(peak at oldest value w/o removal, use AADL runtime service Get Value33)

p? Mi~p?� ≡ Get Value then Next Value
(retrieve oldest value, decrement count use AADL runtime service Next Value34)

p?(v) Mi~p?(v)� ≡ Get Value then Next Value
(retrieve oldest value, decrement count use AADL runtime service Next Value35)

p’count Mi~p’count� ≡ Get Count
(count of values queued, use AADL runtime service Get Count36)

p’fresh Mi~p’fresh� ≡ Get Count > 0
(new port value, use AADL runtime service Updated37)

28BA D.5(9)
29BA D.5(9)
30with label Read Empty Event Data Port
31BLESS Differs from BA: empty dequeue exception
32By default, port values are frozen at dispatch.
33AS5506B §8.3.5 Runtime Support for Ports (50) Get Value
34AS5506B §8.3.5 Runtime Support for Ports (52) Next Value
35AS5506B §8.3.5 Runtime Support for Ports (52) Next Value
36AS5506B §8.3.5 Runtime Support for Ports (51) Get Count
37AS5506B §8.3.5 Runtime Support for Ports (53) Updated

Chapter Z.5. Component Interaction Z.5.5. In Event Data Ports

SAE INTERNATIONAL AS5506/Z BLESS Annex v0.9 Page 42 of 159

p’updated Mi~p’updated� ≡ Updated.FreshFlag
(new port value, use AADL runtime service Updated38)

Z.5.6 Concurrency Control

(1) Within a Behavior Specification subclause the value of incoming parameters of the containing sub-
program type is returned by the corresponding formal parameter identifier. The value of the parameter has
been frozen at the time of the call. Multiple references to a formal parameter return the same value. In the
case of subprogram calls, outgoing parameters return their result by assigning them to the local variable
named as the corresponding formal parameter identifier. The local variable can then be referenced to return
its value.39

(2) Access to shared data subcomponents is controlled according to the
Concurrency Control Protocol property specified associated with this data subcomponent.40 If con-
currency control is enabled, critical sections boundaries are defined by one of the following ways:

• By explicit definition of the time range over which a set of referenced shared data subcomponent are
accessed. This is done using the *!< for starting time (resp. *!>) for ending time) locking actions
(see Z.6.12 Locking Actions) within a behavior action block. If the critical section contains references
to several shared data subcomponents, then resource locking will be done in the same order as the
occurrence of the references to the shared data subcomponents and resource unlocking will be done
in the reverse order. These operators may be used to refine the value of the Access Time property41

if it has been specified.

• By calls to appropriate provides subprogram access of the corresponding data component that have
been explicitly defined to implement the concurrency control protocol.

• By explicit calls to the Get Resource (resp. Release Resource) runtime service42 that can be
achieved using the !< (resp. !>) operators applied to the shared data subcomponent identifier.

43

(3) A transition action can write data values to a shared data component by naming the data component directly
or the data access identifiers declared in the component type on the left-hand side of an assignment, i.e., d
:= v.44

38AS5506B §8.3.5 Runtime Support for Ports (53) Updated
39BA D.5(11)
40AS5506B §5.1 Data
41AS5506B §8.6 Data Component Access
42AS5506B §5.1.1 Runtime Support For Shared Data Access
43BA D.5(12)
44BA D.5(16)

Chapter Z.5. Component Interaction Z.5.6. Concurrency Control

SAE INTERNATIONAL AS5506/Z BLESS Annex v0.9 Page 43 of 159

Z.5.7 Out Ports

(1) Messages can be sent within a Behavior Specification subclause through declared features of the
current component type. They can be: out or in out data ports; out or in out event ports; out or in
out event data ports.45

(2) The sending of messages is consistent with the timing semantics of the core language. The core language
specifies the output time through an Output Time46 property and the sending of the output is initiated by
a Send Output service call in the source text. For data ports the output is implicitly initiated at completion
time (or deadline in the case of delayed data port connections).47

Table Z.5.3: Out Communication Actions
Meaning Grammar Corresponding service call
put p := v Put Value
send p! Send Output
put and send p!(v) Put Value and then Send Output

(3) Within a Behavior Specification subclause, the following constructs are available to set the value of
an out port p:48.

• p!calls Put Value on an event or event data port. The event is sent to the destination with assigned
data, if any, according to the Output Time property.

• p := d calls Send Output data or event data port. Data is transferred to the destination port
according to the Output Time property.

• p!(d) writes data d to the event data port p and calls the Put Value and then Output Time
services. The event is sent to the destination according to the Output Time property.

Consistency Rule

(C1) If the sending time of an output port is specified with the Output_Time property49, then no send out-
put action must be specified in the corresponding behavior actions of the Behavior Specification
subclause, or the two statements must be equivalent.50

Semantics

(S1) The precondition of port output must imply the assertion property of the port. The conjunction of the precon-
dition of port output and event occurrence must imply the postcondition of port output.

45BA D.5(13)
46AS5506B §8.3.2 Port Input and Output Timing
47BA D.5(14)
48BA D.5(15)
49AS5506B 8.3.2
50BA D.5(C2)

Chapter Z.5. Component Interaction Z.5.7. Out Ports

SAE INTERNATIONAL AS5506/Z BLESS Annex v0.9 Page 44 of 159

Event Port Output:

[EPOut]

A ∧ p@now→ B
A→ M~p�
�A� p! �B�

(S2) For data and event data output

(S3) For each out event port, p,

Mi~p!� ≡ Put Value()
(send event from port, use AADL runtime service Put Value with no DataValue parameter51; issued at
Output Time)

(S4) Equivalently, to send an out port event, a transition causes the clock of the port to be true.
T (s, g, d)[p!] = (s, g, d, p̂). 52

(S5) For each out event data port, p,

Mi~p!(e)� ≡ Mi~p:=e� ≡ Put Value(e)
(send event data from port, use AADL runtime service Put Value; issued at Output Time)

(S6) Equivalently, to send data on an out event data port, a transition causes the value of the port to be the data
sent, and then reset.
T (s, g, d)[p!(e)] = {(s, g, c, p = e)(c, g, d,¬p̂)} by introducing a new execution state c. 53

(S7) To send data on an out data port, a transition causes the value of the port to be the data sent, but not reset.
T (s, g, d)[p!(e)] = T (s, g, d)[p := e] = (s, g, c, p = e). 54

Z.5.8 Subprogram Invocation

(1) Subprograms may be invoked (called) as an action.

Grammar
subprogram_invocation ::=

subprogram_name ([parameter_list])55

subprogram_name ::= subprogram_prototype_name
| required_subprogram_access_name
| subprogram_subcomponent_name
| subprogram_unique_component_classifier_reference
| required_data_access_name . provided_subprogram_access_name
| local_variable_name . provided_subprogram_access_name

51AS5506B §8.3.5 Runtime Support for Ports (45) Put Value
52JP
53JP
54JP
55BLESS Differs from BA: no ! for subprogram invocation

Chapter Z.5. Component Interaction Z.5.8. Subprogram Invocation

SAE INTERNATIONAL AS5506/Z BLESS Annex v0.9 Page 45 of 159

parameter_list ::= parameter { , parameter }*
parameter ::= [formal_parameter_identifier :] actual_parameter

actual_parameter ::= target | expression

(2) Requires subprogram access features that are declared in the component type can be called inside an
action block of a transition. Call parameters can be previously received subprogram parameters, ports value
or assigned temporary variables.56

(3) Subprogram invocations can be used in sequential composition or concurrent composition. In sequential
composition they represent synchronous subprogram calls, while in concurrent composition they represent
semi-synchronous calls, i.e., multiple calls are initiated to be performed simultaneously. The concurrent
composition is considered to have completed when all subprogram calls within that set have completed.
Note that the results from out parameters of one simultaneous call cannot be used as input to another call
or other action in the same concurrent composition.57

(4) Within Behavior Specification subclauses, the following constructs are available to call required subprogram
s:58

• s() calls the parameter-less subprogram referred to by the requires subprogram access feature s.

• s(f1:a1,...,fn:an) calls the subprogram referred to by the requires subprogram access feature
s with the corresponding formal-actual parameter list.59

(5) By default the subprogram invocation is synchronous with the calling thread being blocked, which cor-
responds to a Synchronous Subprogram Call Type property.60 To specify non-blocking calls, a
SemiSynchronous Subprogram Call Type property must be applied to the subprogram.61

Legality Rule

(L1) In a subprogram invocation, the parameter list must match the signature of the subprogram being in-
voked.62

Semantics

(S1) Subprogram invocation is lattice construction after actual for formal substitution.

Where p is a subprogram name and f1 : a1, . . . , fk : ak are formal-actual parameter pairs:

Mi~p(f1 : a1, . . . , fk : ak)� ≡ Mi~p|
f1,..., fk
a1,...,ak�

(S2) The weakest-precondition semantics of subprogram invocation are defined by substituting actual parameters
for formal parameters in the subprogram’s pre- and post-conditions.

56BA D.5(18)
57BA D.6(14)
58BA D.5(19)
59BLESS Differs from BA: formal-actual subprogram parameters
60AS5506B §5.2 Subprograms and Subprogram Calls
61BA D.5(21)
62BA D.6(L5)

Chapter Z.5. Component Interaction Z.5.8. Subprogram Invocation

SAE INTERNATIONAL AS5506/Z BLESS Annex v0.9 Page 46 of 159

Where p is a subprogram name and f1 : a1, . . . , fk : ak are formal-actual parameter pairs, pre| f1,..., fka1,...,ak and
post| f1,..., fka1,...,ak are the precondition and postcondition of p after actual parameters are substituted for formal
parameters:

Subprogram Invocation [SI]: wp(p(f1 : a1, . . . , fk : ak),Q) ≡ Q|pre
post

These two semantics for subprogram invocation are equivalent because the precondition applies to the start
state of the lattice, and the postcondition applies to the end state of the lattice.

(S3) Subprogram invocations are specified using the communication protocols HSER, LSER or ASER defined in
(TBD).63 A subprogram invocation is hence translated by the composition of the client (the caller) and server
(the callee) with the behavior of the calling protocol.

63Wherever D.8 Synchronization Protocols are to be defined

Chapter Z.5. Component Interaction Z.5.8. Subprogram Invocation

Chapter Z.6
Action

(1) Actions associated with transitions are action blocks that are built from basic actions and a minimal set of
control structures allowing action sequences, action sets, conditionals and finite loops. Action sequences
are executed in order, while actions in actions sets can be executed in any order. Finite loops allow iterations
over finite integer ranges.1

Z.6.1 Behavior Actions

(1) The behavior actions may be a single asserted action (Z.6.2), sequential composition of actions (Z.6.5), or
concurrent composition of actions (Z.6.6).

behavior_actions ::=
asserted_action | sequential_composition | concurrent_composition

Z.6.2 Asserted Action

(1) An asserted action is an action that may have assertions as pre- and post-conditions.2 No terminating
semicolon occurs after the post-condition. Semicolon is used for sequential composition.

asserted_action ::=
[precondition_assertion] action [postcondition_assertion]

Semantics

(S1) Where P and Q are predicates, and S is an action:

1BA D.6(1)
2BLESS Differs from BA: assertions around actions

47

SAE INTERNATIONAL AS5506/Z BLESS Annex v0.9 Page 48 of 159

Mi~�P� S �Q�� ≡ Mstart(i)~P� ∧Mend(i)~Q� ∧Mi~S �
(the meaning of subprogram behavior is that P is true in the stating state of i, Q is true in the ending state of
i, and i satisfies S)

Inference Rule

(S2) An asserted action�P� S �Q� is true, if P implies the weakest precondition (wp) of S and Q.

Weakest Precondition: [WP]
P→ wp(S ,Q)
�P� S �Q�

(S3) Equivalently, �P� S �Q� has the behavior of an automata transition T (s, true, d, true)[S] from state s in
which assertion�P� holds, to state d in which assertion�Q� holds while performing action S . 3

Example� �
<<INVW() and (PCA_Properties::Drug_Library_Size=k)>>
No_Drug_Found! --indicate drug code not found
<<DL()>>� �

Z.6.3 Action

(1) An action may be a basic action (Z.6.4), an alternative formula (Z.6.7), a loop (Z.6.10), a for-all (Z.6.9), a
locking action (Z.6.12) or a block (Z.6.8).

Grammar
action ::=

basic_action
| behavior_action_block
| alternative
| for_loop
| forall_action
| while_loop
| do_until_loop
| locking_action

Z.6.4 Basic Actions

(1) Basic actions can be assignment actions, communication actions or time consuming actions4, or no action at
all (skip). Threads can perform actions forbidden for subprograms such as sending and receiving events
and data on ports, or assigning values of variables for the following period.

3JP
4BA D.6(2)

Chapter Z.6. Action Z.6.3. Action

SAE INTERNATIONAL AS5506/Z BLESS Annex v0.9 Page 49 of 159

(2) Communication actions can be freezing the content of incoming ports, initiating a send on an event, data,
or event data port, initiating a subprogram call or catching a previously raised execution Timeout exception.
Some communication actions include implicit assignments, such as the assignment of actual parameters on
subprogram calls (see Z.5.1).5

Grammar
basic_action ::=

skip
| assignment
| simultaneous_assignment
| communication_action
| timed_action
| when_throw
| combinable_operation
| issue_exception
| computation_action

Z.6.4.1 Skip

(1) A skip action does nothing at all.6

Semantics

(S1) The weakest precondition of skip is the same as its postcondition.

Skip [S]:
Mt~wp(skip,Q)� ≡ Mt~Q� (skip changes nothing)

Z.6.4.2 Assignment

(1) An assignment evaluates an expression and binds a variable to that value. When the variable name is
followed by a ’, the value is bound to the variable one period hence.

(2) Assignments consist of a value expression and a target reference for the value assignment separated by
the assignment symbol := . When an assignment action is performed, the result of the evaluation of the
right hand side expression is stored into the entity specified by the left hand side target reference. Target
references of assignments are local variables, data components acting as persistent state variables, and
outgoing features such as ports and parameters.7

(3) When assignment actions are used in concurrent composition, then the assigned values are not accessible
to expressions of other assignment actions in the same concurrent composition by naming the assignment

5BA D.6(4)
6BLESS Differs from BA: skip
7BA D.6(3)

Chapter Z.6. Action Z.6.4. Basic Actions

SAE INTERNATIONAL AS5506/Z BLESS Annex v0.9 Page 50 of 159

target.8

(4) The keyword any should be used to represent non-deterministic behaviors. The purpose of any is to
represent easily that the assigned value could take any of the possible value determined by the data type.
This could be used for formal verification or for simulation purpose using a randomly generated value. The
any keyword is incompatible with the use of code generation techniques.9

Grammar
assignment ::=

variable_name [’] := (expression | record_term | any)

(5) When assigning a variable of record type, the value can be expressed as record term.10

record_term ::= ({ record_value }+)

record_value ::= field_identifier => value ;

Consistency Rule

(C1) The type of the assigned value must be consistent with the type of the assignment target. The corresponding
literal values are acceptable values for those types.11

Legality Rules

(L1) Only periodic components may delay assignment using ’.

(L2) In an assignment action, the type of the value expression must match the type of the target.12

Semantics

(S2) The effect of assigning the value of an expression to a variable is defined using weakest precondition pred-
icate transformers. Where Q is an Assertion, n is a variable name, e is an expression, t is the time of
assignment, d is the duration of the period of a periodic component, and Q|ne means to replace every occur-
rence of expression e in Q with variable name n:

Thread Assignment [TA]:
Mt~wp(n:=e,Q)� ≡ Mt~Q|ne� (wp by substitution of variable with expression)
Mt~wp(n’:=e,Q)� ≡ Mt+d~Q|ne� (time-shifted wp by substitution)

Z.6.4.3 Simultaneous Assignment

(1) Simultaneous assignment13 for components is the same as that for subprograms, but allows assignment of
next values of variables.

8BA D.6(15)
9BA D.6(21)

10BLESS Differs from BA: record assignment
11BA D.6(16)
12BA D.6(L1)
13BLESS Differs from BA: simultaneous assignment

Chapter Z.6. Action Z.6.4. Basic Actions

SAE INTERNATIONAL AS5506/Z BLESS Annex v0.9 Page 51 of 159

Grammar
simultaneous_assignment ::=
(variable_name [’] { , variable_name [’] }+
:=
(expression | record_term | any)

{ , (expression | record_term | any) }+)

Semantics

(S3) Where Q is an Assertion, n1, n2, n3, . . . , are variable names, and e1, e2, e3, . . . , are expressions, and Q|n1,n2,n3,...
e1,e2,e3,...

means to replace every occurrence of variable name nx listed with the expression ex in the corresponding
position in Q:

Thread Simultaneous Assignment [TSA]:
Mt~wp((n1,n2,n3,...:= e1,e2,e3,...),Q)� ≡ Mt~Q|

n1,n2,n3,...
e1,e2,e3,... �

(wp by substituting all listed variables with corresponding expression as in §??)
Mt~wp((n1’,n2’,n3’,...:= e1,e2,e3,...),Q)� ≡ Mt+d~Q|

n1,n2,n3,...
e1,e2,e3,... �

(time-shifted substitution of variables by expressions in postcondition)

Z.6.4.4 Computation Action

(1) A computation action models the duration of execution for scheduling, and timing analysis.14 Presumably im-
plementation will replace communication actions with behavior actions, and derive information for scheduling
and timing from simulations or analyses of compiled code.15

(2) computation(min .. max) expresses the use of the CPU for a duration between min and max. The
time is specified in terms of time units as defined by the Time_Units property type in the core standard.
One value can be specified when min and max are the same.16

Grammar
computation_action ::=

computation (behavior_time [.. behavior_time])
[in binding (processor_unique_component_classifier_reference

{ , processor_unique_component_classifier_reference }+)]

behavior_time ::= integer_expression unit_identifier

Legality Rule

(L3) The unit identifier must be a time unit.

(L4) The time values must be integers.

(L5) The value of the max time must be greater than or equal to the value of the min time.17

14Reconciliation: computation action
15BA D.6(5)
16BA D.6(18)
17BA D.6(L8)

Chapter Z.6. Action Z.6.4. Basic Actions

SAE INTERNATIONAL AS5506/Z BLESS Annex v0.9 Page 52 of 159

Semantics

(S4) When a single behavior-time is used, that defines the difference between suspension and dispatch times.

(S5) When two behavior-times are used, that defines the allowed range in the difference between suspension and
dispatch times.

Z.6.4.5 Issue Exception

An issue exception action forces transition to an identified state, and send the message string to the implicit
Exception out event data port.18

Grammar
issue_exception ::=

exception ([exception_state_identifier ,] message_string_literal)

Z.6.5 Sequential Composition

(1) Sequential composition of actions performs them one after another, in order of appearance.19

Grammar

sequential_composition ::= asserted_action { ; asserted_action }+

Semantics

(S1) Where S1 and S2 are formulas, and i, j, and m are intervals:

Mi~ S1;S2 � ≡ ∃j ⊂ i,m ⊂ i |Mj~ S1 � ∧ Mm~ S2 � ∧ start(m) = end(j)
(there exist subintervals j and m of i such that j satisfies S1 , m satisfies S2 , and the least element of m is
the upper bound of j)

Sequential composition is depicted as sequential lattice combination, i1 y i2, in Figure 1.3.

(S2) Equivalently, S1 ; S2 has the behavior of an automata transition T (s, g, d, f)[S 1; S 2] translated to the
transition system T ⇒ T1 ∪ T2 where T1 = T (s, g, e, x)[S 1] and T2 = T (e, x, d, f)[S 2] by introducing a new
execution state e and clock formula x. Sequential composition of more than two actions uses this translation
inductively. 20

Inference Rules

Sequential Composition: [SC]

�P� S 1 �R1 ∧ R2�

�R1 ∧ R2� S 2 �Q�
�P� S 1 �R1� ; �R2� S 2 �Q�

18BLESS Differs from BA: issue exception
19BA D.6(11)
20JP

Chapter Z.6. Action Z.6.5. Sequential Composition

SAE INTERNATIONAL AS5506/Z BLESS Annex v0.9 Page 53 of 159

Sequential Composition of k Asserted Actions:

[SCk]

�P1� S 1 �Q1 ∧ P2�

�Q1 ∧ P2� S 2 �Q2 ∧ P3�

· · ·

�Qk−1 ∧ Pk� S k �Qk�

�P1� S 1 �Q1� ; �P2� S 2 �Q2� ; · · · ; �Pk� S k �Qk�

Examples� �
la:=StartButton
<<(la=StartButton) and (Rx_APPROVED())@now and PB_DURATION()>>

;
Infusion_Flow_Rate!(Basal_Rate) --infuse at basal rate
<<(la=StartButton) and (Infusion_Flow_Rate@now=Basal_Rate@now)

and PB_DURATION()>>� �� �
<<VS(now) and LAST_AS(now) and LAST_AP(now)>>

vs!
<<vs@now and LAST_AS(now) and LAST_AP(now) and AXIOM_CCI()
and AXIOM_LRLi_gt_URLi_LIMIT(now)>>

;
cci!(now-last_vp_or_vs)

<<vs@now and LAST_AS(now) and LAST_AP(now)
and AXIOM_LRLi_gt_URLi_LIMIT(now)>>

;
last_vp_or_vs := now

<<(last_vp_or_vs=now) and vs@now and LAST_AS(now) and LAST_AP(now)
and AXIOM_LRLi_gt_URLi_LIMIT(now)>>� �� �

<<E() and ACTUAL_POSITION>0 and ACTUAL_IN_RANGE()>>
Delta := -1 --set the delta
<<E() and Delta= -1 and (ACTUAL_POSITION-1)>=0 and AXIOM_GT(ACTUAL_POSITION)

and ACTUAL_POSITION<=PCS::MaxPosition>>
; --close valve one step
ActuatorCommand(pc:Delta)
<<ACTUAL_POSITION’=(ACTUAL_POSITION+Delta) and Delta= -1

and (ACTUAL_POSITION-1)>=0 and E()
and (ACTUAL_POSITION-1)<=PCS::MaxPosition>>

; --set own estimate of position
EstimatedActualPosition’ := (EstimatedActualPosition-1)
<<EstimatedActualPosition’=ACTUAL_POSITION’
and ACTUAL_POSITION’>=0 and ACTUAL_POSITION’<=PCS::MaxPosition>>� �

Z.6.6 Concurrent Composition

(1) Concurrently-composed actions are order independent; the actions may be performed in any order, or con-
currently with the same result.21

21BA D.6(11)

Chapter Z.6. Action Z.6.6. Concurrent Composition

SAE INTERNATIONAL AS5506/Z BLESS Annex v0.9 Page 54 of 159

concurrent_composition ::= asserted_action { & asserted_action }+

Legality Rules

(L1) The same local variable must not be assigned in different actions of a concurrent composition.22

(L2) The same port must not be assigned in different actions of a concurrent composition.23

Semantics

(S1) Where S 1 and S 2 are actions; P and Q are assertions:

Concurrent Composition: [CC]

�P� S 1 �Q�
�P� S 2 �Q�

�P� S 1 & S 2 �Q�

(S2) Where A1, A2, . . . , Ak are asserted actions: A j = �P j� S j �Q j� for j ∈ 1..k; P and Q are asser-
tions:

Concurrent Composition of k Asserted Actions:

[CCk]

P→ P1, P→ P2, · · · , P→ Pk
�P1� S 1 �Q1�

�P2� S 2 �Q2�

· · ·

�Pk� S k �Qk�

Q1 ∧ Q2 ∧ · · · ∧ Qk → Q

�P� {A1 & A2 & . . . & Ak} �Q�

In general, when the optional precondition P j is omitted from asserted action A j, then P may be used in
its place. When all of the optional postconditions Q j are omitted, then Q may be used for each. If any
postconditions Q j are included, then true may be used for omitted postconditions.

(S3) Concurrent composition is depicted as concurrent lattice combination, i1 � i2, in Figure 1.3. Where S 1 and
S 2 are actions, and i, j, and m are intervals:

Mi~ S1 &S2 � ≡ ∃j ⊂ i,m ⊂ i |
Mj~S 1� ∧ Mm~S 2�,

start(i) = start(m) = start(j),
end(i) = end(m) = end(j)

(there exist subintervals j and m of i such that j satisfies S1 , m satisfies S2 , and
i, j, and m share least elements and upper bounds)

Semantics for more than two concurrently-composed actions are defined inductively.

22BA D.6(L3)
23BA D.6(L4)

Chapter Z.6. Action Z.6.6. Concurrent Composition

SAE INTERNATIONAL AS5506/Z BLESS Annex v0.9 Page 55 of 159

(S4) Equivalently, S1 &S2 has the behavior of an automata transition T (s, g, d, f)[S 1&S 2] translated to the
synchronous composition24 (T1|T2)[(s, s)/s, (d, d)/d] of transition systems where T1 = T (s, g, d)[S 1] and T2 =

T (s, g, d)[S 2] substituting the composed states (s, s) and (d, d) by s and d. 25

Example� �
T18_VRP_EXPIRED : --vs after VRP expired
check_vrp -[sv? and not tnv? and (vrp<=(now-last_vp_or_vs))]-> va

{<<VS(now) and LAST_VP_OR_VS(now) and LAST_AS(now) and LAST_AP(now)>>
vs!
<<vs@now and LAST_AS(now) and LAST_AP(now)>>

-- and AXIOM_LRLi_gt_URLi_LIMIT(now)
&
cci!(now-last_vp_or_vs)
&
last_vp_or_vs := now
<<(last_vp_or_vs=now) and LAST_VP_OR_VS(now)>>};� �

Z.6.7 Alternative

(1) An alternative action using guarded actions (or commands) makes the proof semantics symmetric. A boolean
expression guards each alternative; guards may be evaluated in any order.26 At least one of the guards must
be true. If more than one guard is true, any of their alternatives may be performed.

(2) An alternative action using if-elseif-else makes semantics asymmetric.27 The order is now significant in
that cascading alternatives assume that no previous alternative was taken. Sometimes, that important,
sometimes not, which leads to misunderstanding and error.

alternative ::=
if guarded_action { [] guarded_action }+ fi
|
if (boolean_expression_or_relation) behavior_actions
{ elsif (boolean_expression_or_relation)

behavior_actions }*
[else behavior_actions]
end if

guarded_action ::=
(boolean_expression_or_relation)˜> behavior_actions

Legality Rules

(L1) At least one of the guards must be true.

(L2) The weakest precondition of alternative is least one guard must be true.

24put reference to synchronous composition here
25JP
26BLESS Differs from BA: if [] fi
27Reconciliation: add if-elsif-else

Chapter Z.6. Action Z.6.7. Alternative

SAE INTERNATIONAL AS5506/Z BLESS Annex v0.9 Page 56 of 159

Semantics

(S1) The semantics of if-fi alternative is classic28 guarded commands.

Mi~ if (B1)->S1[](B2)->S2[] · · · [](Bn)->Sn fi �

≡

Mstart(i)~B1� → Mi~S 1�,
Mstart(i)~B2� → Mi~S 2�,

...
Mstart(i)~Bn� → Mi~S n�,

Mstart(i)~B1� ∨Mstart(i)~B2� ∨ · · · ∨Mstart(i)~Bn�
(whenever a guard is true at the beginning of interval i, its action will be true over all of i, and at least one of
the guards is true)

(S2) Equivalently, if (B1)->S1[](B2)->S2[]fi has the behavior of an automata transition
T (s, g, d, f)[if (B1)->S1[](B2)->S2[]fi] translated to the union of transition systems T ⇒ T1 ∪

T2 where T1 = T (s, g ∧ B1, d)[S 1] and T2 = T (s, g ∧ B2, d)[S 2]. An arbitrary number of alternatives is
defined similarly making a transition system for each alternative. At least one alternative guard must be true.
29

(S3) The semantics of if-elsif-else alternative is defined in terms of and equivalent if-fi alternative.

Mi~ if (B1)S1 elsif (B2)S2 . . . elsif (Bn)Sn else Sm end if �

≡

Mstart(i)~B1� → Mi~S 1�,
Mstart(i)~B2� ∧ ¬Mstart(i)~B1� → Mi~S 2�,

...
Mstart(i)~Bn� ∧ ¬Mstart(i)~B1� . . . ∧ ¬Mstart(i)~Bn−1� → Mi~S n�,

¬Mstart(i)~B1� . . . ∧ ¬Mstart(i)~Bn� → Mi~S m�

(S4) Equivalently, if (B1)S1 elsif (B2)S2 else Sm end if has the behavior of an automata tran-
sition T (s, g, d, f)[if (B1)S1 elsif (B2)S2
else Sm end if] translated to the union of transition systems T ⇒ T1 ∪ T2 ∪ Tm where T1 = T (s, g ∧
B1, d)[S 1] , T2 = T (s, g ∧ B2 ∧ ¬B1, d)[S 2], and Tm = T (s, g ∧ ¬B2 ∧ ¬B1, d)[S m]. An arbitrary number of
alternatives is defined similarly making a transition system for each alternative. 30

Inference Rules

(S5) Where B1 , B2 , and Bn are boolean-valued expressions, and S1 , S2 , and Sn are actions:31

Alternative:

[IF]

P→ B1 ∨ B2 ∨ · · · ∨ Bn,
P ∧ B1 → P1, P ∧ B2 → P2, . . . , P ∧ Bn → Pn,

�B1 ∧ P� S 1 �Q1�, �B2 ∧ P� S 2 �Q2�, . . . , �Bn ∧ P� S n �Qn�,
�Q1�→�Q�, �Q2�→�Q�, . . . , �Qn�→�Q�,

<<P>> if (B1)-> <<P1>>S1<<Q1>> [] · · · [](Bn)-> <<Pn>>Sn<<Qn>> fi <<Q>>
28Dijkstra-Gries
29JP
30JP
31The · · · represent elided guarded actions.

Chapter Z.6. Action Z.6.7. Alternative

SAE INTERNATIONAL AS5506/Z BLESS Annex v0.9 Page 57 of 159

Examples� �
if
--good SpO2 reading, reset counter
(SensorConnected? and not MotionArtifact?)˜>

<<SensorConnectedˆ0 and not MotionArtifactˆ0>>
numBadReadings := 0

<<NUMBAD()>>
[] --bad SpO2, not enough bad reading to alarm
(MotionArtifact? or not SensorConnected?)˜>

<<all j:integer in 0 ..numBadReadings are
MotionArtifactˆ(-j) or not SensorConnectedˆ(-j)>>

numBadReadings :=numBadReadings+1
<<NUMBAD()>>

fi� �� �
if (SensorConnected? and not MotionArtifact?)
then
numBadReadings := 0

else
numBadReadings :=numBadReadings+1

end if� �� �
if
(guard_A)˜> action_A

[]
(guard_B)˜> action_B

[]
(guard_C)˜> action_C

[]
(guard_D)˜> action_D

fi� �
Z.6.8 Behavior Action Block

(1) A behavior action block (optionally) introduces local variables of bounded type and lifetimes.

Grammar
behavior_action_block ::=

[quantified_variables] { behavior_actions }
[timeout behavior_time] [catch_clause]

quantified_variables ::= declare { behavior_variable }+
(2) The optional catch clause allows specification of behavior upon occurrence of exceptions as defined in

Z.6.11, Exception Handling.32

(3) Quantified variables are local variables, and exist only during lattice construction. Behavior variables are
defined in Z.3.3, Behavior Variables.33

32BLESS Differs from BA: catch clause
33BLESS Differs from BA: local variables for block

Chapter Z.6. Action Z.6.8. Behavior Action Block

SAE INTERNATIONAL AS5506/Z BLESS Annex v0.9 Page 58 of 159

{k

{k

P ∧ v = e

Q

start(i)
PPPq

end(i)
���

S{i

Figure Z.6.1: Behavior Action Block Lattice

Legality Rule

(L1) Timeout on behavior actions are not allowed on behavior transitions with timeout conditions.34

Semantics

(S1) Where v is a variable identifier,t is a type, e is an expression, and S is a formula:

Mi~ <<P>> declare v:t:=e; {S} <<Q>> �

≡
∃ v∈t |Mstart(i)~v� = Mstart(i)~e�
∧Mi~S � ∧ Mstart(i)~P� ∧Mend(i)~Q�

(there exists a variable v of type t, where v equals the value of e evaluated at at start(i), P is true at start(i),
Q is true at end(i), and i satisfies S)

Mi~ {S} � ≡ Mi~S �
(the meaning of braces without quantified variables is its contents)

Inference Rule

Block: [B]

∃v ∈ t | �P ∧ v = e� → �A�
�A� S �B�
�B�→�Q�

�P� declare v:t:=e; {<<A>>S <>} �Q�

(S2) Equivalently, <<P>> declare v:t:=e; {<<A>> S <>} <<Q>> has the behavior of an automata
transition T (s, v = e, d, true)[S] from state s in which assertion�P� holds, to state d in which assertion�Q�
holds while performing action S . Additionally, assertion �A� must be derivable from �P� with the initial
value of v,�P ∧ v = e�→�A�, and also�B�→�Q� in which v may appear in B, but not Q. 35

Example

34BA D.3(L11)
35JP

Chapter Z.6. Action Z.6.8. Behavior Action Block

SAE INTERNATIONAL AS5506/Z BLESS Annex v0.9 Page 59 of 159

Block from cardiac pacemaker rate controller:� �
declare --transient, local variables

siri : real := (msr>(lrl-(f*(xl-thresh)))??msr : lrl-(f*(xl-thresh)));
z : real := ((lrl-msr)*(lrl+msr)) / (2*(rt-lrl));
y : real := ((lrl-msr)*(lrl+msr)) / (2*(ct-lrl));
up_siri : real := ((cci-z)<siri ?? siri : cci-z);
dn_siri : real := ((cci+y)<siri ?? cci+y : siri);
down : real := cci*(1.0+(drs/100.0)); --down rate smoothing
up : real := cci*(1.0-(urs/100.0)); --up rate smoothing

{
<<((lrl-url)<>0) and (z=Z()) and (y=Y())

and (siri=SIRi()) and (dn_siri=DN_SIRi()) and (up_siri=UP_SIRi())
and (down=DOWN()) and (up=UP())>>

dav!((cci*((av-min_av)/(lrl-url))) + min_av)
&
min_cci!((url>(up_siri > up??up_siri: up)??url:(up_siri >up??up_siri:up)))
&
max_cci!((lrl<(dn_siri<down??dn_siri:down)??lrl:(dn_siri<down??dn_siri:down)))
<<true>>
}� �

Z.6.9 Forall

(1) To specify concurrent execution of many similar actions forall action defines local variables restricted to an
integer range,36 that may then be used as variables within its block

Grammar
forall_action ::=

forall variable_identifier { , variable_identifier }*
in integer_expression .. integer_expression
behavior_action_block

Semantics

(S1) Two, identical semantics for forall action are given: weakest-precondition predicate transformer and inference
rule. Weakest-precondition is much preferred, but can only be used when the wp of the body is known.
Semantics for multiple quantified variables is the same as replacing “a” with a sequence of variable identi-
fiers.

(S2) The weakest-precondition predicate transformer for forall action, is the conjunction of the weakest precondi-
tion predicate transformed bodies with the quantified variable replaced by each value in the range, and that
those transformed, substituted bodies are interference free.37 The body that uses the quantified variable is
S (a).

Forall Action [FA]: wp(forall a in R { S(a)} , Q) ≡
∀a ∈ R |wp(S (a),Q),
∀a ∈ R | interference-free(S (a))

36BLESS Differs from BA: only integer range
37Interference freedom is none of the concurrent actions assigns values that other actions either use or assigns.

Chapter Z.6. Action Z.6.9. Forall

SAE INTERNATIONAL AS5506/Z BLESS Annex v0.9 Page 60 of 159

Mi~ forall a in R {<<p(a)>>S(a)<<q(a)>>} �

≡

∃i1 ∈ i, i2 ∈ i, . . . , in ∈ i, |
i = i1 � i2 � . . . � in
∀a ∈ R |Mstart(ia)~pa�
∀a ∈ R |Mia~<<p(a)>>S(a)<<q(a)>>�
∀a ∈ R |Mend(ia)~qa�

(the satisfying interval is the concurrent composition of intervals satisfying the body for each value a in R)

Inference Rule

(S3) Where B(i) is the value of B after the ith iteration, E is a boolean-valued expression, B is an integer-valued
function, S is an action, and P, I, and Q are assertions:

Forall Action: [FA]

P→ ∀a ∈ [lb..ub] Ra
�Ra� S a �Ta�

∀a ∈ [lb..ub] Ta → Q
∀a , b ∈ [lb..ub] interference-free(S a, S b)

�P� forall a:t in lb..ub {<<R>>S<<T>>} �Q�
(to prove forall action requires: the precondition imply all inner preconditions, the body is correct, all inner
postconditions together imply the postcondition, and all actions are inteference-free)

(S4) Equivalently, forall a:t in lb..ub <<R>>S<<T>> has the behavior of an automata transition
T (s, g, d)[forall a:t in lb..ub S] translated to the union of transition systems T ⇒ T1∪T2 . . .∪Tm

where T1 = T (s, g ∧ (t = lb), d)[S] , T2 = T (s, g ∧ (t = lb + 1), d)[S], and Tm = T (s, g ∧ (t = ub), d)[S]. An
arbitrary number of alternatives is defined similarly making a transition system for each alternative. 38

Example� �
<<SpO2_INV() and (num_samples<PulseOx_Properties::Num_Trending_Samples)>>

forall i:integer in 1 ..num_samples
{
<<spo2[i]=(MotionArtifactˆ(-i) or not SensorConnectedˆ(-i)??0:SpO2ˆ(-i))>>
spo2_nxt[i+1]:=spo2[i] --shift old samples

<<spo2_nxt[i+1]=(MotionArtifactˆ(-i) or not SensorConnectedˆ(-i)
??0:SpO2ˆ(-i))>>

}
<<SHFT: :all i:integer in 1 ..num_samples
are spo2_nxt[i+1]=(MotionArtifactˆ(-i) or not SensorConnectedˆ(-i)

??0:SpO2ˆ(-i))>>� �
Z.6.10 Loops

(1) Loops allow actions to be repeated in some controlled manner.

38JP

Chapter Z.6. Action Z.6.10. Loops

SAE INTERNATIONAL AS5506/Z BLESS Annex v0.9 Page 61 of 159

Z.6.10.1 While Loop

(1) The while loop repeats an action while a guard (boolean expression) is true. While loops may have invariant
assertion, and a bound function. The invariant must be true before and after each iteration. The bound
function when positive must imply the guard is true; the bound function when zero or less must imply the
guard is false; and, each iteration of the loop must decrease the value of the bound function.

Grammar
while_loop ::=

while (boolean_expression_or_relation)
[invariant assertion]
[bound integer_expression]
behavior_action_block

Semantics

(S1) Where B(i) is the value of B after the ith iteration, E is a boolean-valued expression, B is an integer-valued
function, S is an action, and P, I, and Q are assertions:

Loop: [L]

P→ I
I → wp(S , I)

(I ∧ ¬E)→ Q
B > 0→ E

B(i) > B(i + 1)
�P� while (E)invariant <<I>> bound B {S} �Q�

(S2) Equivalently, while (E){ S } has the behavior of an automata transition T (s, g, d, f)[while (E){ S }
] translated to the union of transition systems T ⇒ T1 ∪ T2 ∪ T3 ∪ T4 where T1 = T (s, g ∧ E, c)[S] ,
T2 = T (c, E, c)[S], T3 = T (c,¬E, d, f)[S], and T4 = T (s,¬E, d, f), by introducing a new execution state
c. If defined, invariant <<I>> must hold for states s, d, and c. 39

Example� �
while ((dc <> dl[k].code) and

((PCA_Properties::Drug_Library_Size-k)>0))
invariant <<INVW()>>
bound (PCA_Properties::Drug_Library_Size-k)
{
<<((PCA_Properties::Drug_Library_Size-k)>0) and INVW()>>
k:=k+1
<<(0<(PCA_Properties::Drug_Library_Size-(k-1))) and INVW()>>
}

<<INVW() and not
((dc<>dl[k].code) and
((PCA_Properties::Drug_Library_Size-k)>0))>>� �

39JP

Chapter Z.6. Action Z.6.10. Loops

SAE INTERNATIONAL AS5506/Z BLESS Annex v0.9 Page 62 of 159

Z.6.10.2 For Loop

(1) A for loop is a handy specialization of a while loop, that introduces an integer variable, defined over an integer
range,40 implicitly initialized at the lower bound, incremented after each iteration, and loop termination after
the variable equals the upper bound.

Grammar
for_loop ::=

for integer_identifier in integer_expression .. integer_expression
[invariant assertion] { asserted_action }

Naming Rule

(N1) The integer identifier of a for control construct represents a variable whose scope is local to the for construct.
Such a variable must not be otherwise be visible in scope.41

Legality Rules

(L1) The lower bound must be at most the upper bound.

(L2) An integer identifier of a for loop is not a valid target for an assignment action.42

Semantics

(S3) Where a is a fresh integer variable, lb and ub are integer-valued expressions for the lower-bound and
upper-bound respectively, I is a predicate invariant before and after each execution of the loop, and S(a)
are behavior actions that use a:

For: [FOR]

lb ≤ ub ,
�P�

variables a:Ideal::integer:=lb;
{while (a<=ub)invariant <<I>>

bound ub-a {S(a);a:=a+1}}
�Q�

�P� for (a in lb..ub)invariant <<I>> { S(a)} �Q�

(S4) Equivalently, for (a in lb..ub){ S(a)} has the behavior of an automata transition
T (s, g, d)[for (a in lb..ub){ S(a)}] translated to the union of transition systems T ⇒ T1∪T2 . . .∪
Tm where T1 = T (s, g, c1)[S (lb)] , T2 = T (c1, true, c2)[S (lb + 1)], and Tm = T (cm−1, true, d)[S (ub)], by intro-
ducing a new execution states c1 . . . cm−1, where m = (ub − lb) + 1. If defined, invariant <<I>> must hold
for states s, d, and c1 . . . cm−1. 43

Example� �
for (i in lb..ub) invariant <<A()>> { h[i] := g[i] }� �

40BLESS Differs from BA: only integer range
41BA D.6(N1)
42BA D.6(L2)
43JP

Chapter Z.6. Action Z.6.10. Loops

SAE INTERNATIONAL AS5506/Z BLESS Annex v0.9 Page 63 of 159

Z.6.10.3 Do-Until Loop

(1) A do-until loop is another specialization of a while loop in which the body is executed unconditionally before
evaluating the guard.

do_until_loop ::=
do [invariant assertion] [bound integer_expression]
behavior_actions
until(boolean_expression_or_relation)

Semantics

(S5) Where B(i) is the value of B after the ith iteration, E is a boolean-valued expression, B is an integer-valued
function, S is behavior actions, and P, I, and Q are assertions:

Do-Until: [UNTIL]
�P� S <<I>>; while (not E)invariant <<I>> bound B { S } �Q�

�P� do invariant <<I>> bound B S until (E) �Q�

(S6) Equivalently, do S until (E) has the behavior of an automata transition T (s, g, d, f)[do S until (E)
] translated to the union of transition systems T ⇒ T1 ∪ T2 ∪ T3 where T1 = T (s, g, c)[S] , T2 = T (c, g ∧
¬E, c)[S], and T3 = T (c, E, d, f), by introducing a new execution state c. If defined, invariant <<I>> must
hold for states s, d, and c. 44

Z.6.11 Exception Handling

(1) Safety-critical systems need to define system behavior in every exceptional circumstance. Therefore a way
to specify how those exceptions shall be detected, reported, and resolved. BLESS concerns mostly the
reporting part plus some detection. Most importantly, BLESS behavior does not resolve exceptions; it just
emits an event out a port with an error code. The Error Model Annex45 (EMV2) was made to be used to
define system response to faults like BLESS exceptions.

Grammatically, to catch an exception involves adding an optional catch clause to block. Testing for anoma-
lous conditions and raising exceptions adds another basic action.

Grammar

catch_clause ::= catch { (exception_label : basic_action) }+

exception_label ::= { exception_identifier }+ | all

(2) Using all as the exception label will catch every exception with the preceding block. Multiple exceptions
may cause the same action, catch(x1 x2 x3:a) , or different actions, catch(x1:a1) (x2 x3:a2)
.

44JP
45SAE International Standard AS5506B Annex E

Chapter Z.6. Action Z.6.11. Exception Handling

SAE INTERNATIONAL AS5506/Z BLESS Annex v0.9 Page 64 of 159

(3) When exceptions are caught by threads, transition to a special state may be forced with the issue exception
action (Z.6.4.5). This is not allowed within subprograms, because they don’t have states.

(4) Exceptions may be thrown automatically (i.e. divide by zero) or deliberately with a when-throw action.

when_throw ::= when (boolean_expression) throw exception_identifier

Semantics

(S1) Where v is a variable identifier,t is a type, e is an expression, S is a formula, x is an exception identifier, k is
an integer-valued expression, and r!(k) is a basic action that sends an event out error data port r with error
code k:

Mi~ declare v:t:=e { S } catch(x:r!(k)) �
≡ Mi~ declare v:t:=e { S } � ∨ (x ∈ i ∧Mi~ r!(k) �)

(either the lattice is constructed normally, or exception x occurred and value k sent out error port r)

(S2) Semantics for multiple exception labels and actions extends that above.46

Example

The following example performs behavior actions when in state s and condition c is true before transitioning
to state d. The behavior actions are to do some work followed by morework concurrently-composed with
a when-throw action that raises exception x, that when caught sends an event out of port er.� �
s -[c]-> d {work;{morework&when(badthing)throw x}catch(x:er!)};� �
Z.6.12 Locking Actions

Locking actions are part of the BLESS grammar to retain backward compatibility with BA programs that use
them.47

The four locking actions:

*!< enter critical section

*!> leave critical section

!< lock data component

!> unlock data component

Grammar
locking_action ::= *!< | *!> |

required_data_access_name !< | required_data_access_name !>
46SOMEBODY OUGHT TO WRITE A STANDARD LIST OF BUILT-IN EXCEPTIONS LIKE DIVIDE BY ZERO OR ARITHMETIC

OVERFLOW.
47Reconciliation: locking actions

Chapter Z.6. Action Z.6.12. Locking Actions

SAE INTERNATIONAL AS5506/Z BLESS Annex v0.9 Page 65 of 159

Locking actions were originally omitted from BLESS because they void the assumption that the time between
dispatch and suspension is ‘negligible’. Although the definition of ‘negligible’ has been deliberately left fuzzy,
but stopping execution when some other thread had locked a shared data component, or not exited their
mutual critical section. is certainly not negligible.

Anyway, locking actions are a rather blunt mechanism to enforce interference freedom. There are much
more adroit means in safety-critical embedded system to share information that don’t require locking ac-
tions.

Legality Rule

(L1) Accesses to shared data components must be used in a way that no complete state can be reached if
a resource has been locked (using for instance Get_Resource , or !<) and not released (using for
instance Release_Resource , or !>).48

Semantics

(S1) Data accesses are similarly subject to a communication protocol between the calling behavior (the client)
and the parent component owning the data (the server).

• required data access name !<

• required data access name !>

• *!< and *!>

A shared data access lock dataname!< is hence encoded by T (g, s, d)[dataname! <] = (s, g, sds, c), (c, sd f , true, d).
The output port sds encodes the request to dataname and the input port spf is dispatched when access to
dataname is granted. Get Resource and Release Resource actions are treated similarly.

Z.6.13 Combinable Operations

Combinable operations are both indivisible and possibly simultaneous. They allow concurrent access to
shared data structures. Crucially, combinable operations upon the same target, have the same effect
whether executed individually or simultaneously. All combinable operations have three parameters: a target
variable of appropriate type, declared to be shared; a value to be used in the operation; and an identi-
fier of a local variable to hold the result. Combinable operations on shared variables provide concurrent,
interference-free access to spread data structures, particularly arrays. Used properly, a set of combinable
operations has the same effect executed in any order, or simultaneously.

Grammar
48BA D.6(L7)

Chapter Z.6. Action Z.6.13. Combinable Operations

SAE INTERNATIONAL AS5506/Z BLESS Annex v0.9 Page 66 of 159

{k

{k

s = S

s = S + e
r = S

start(i)
PPPq

end(i)
���

fetchadd(s,e,r){i

Figure Z.6.2: Single Fetch-Add

combinable_operation ::=
fetchadd
(target_variable_name , arithmetic_expression [, result_identifier])
|
(fetchor | fetchand | fetchxor)
(target_variable_name , boolean_expression [, result_identifier])
|
swap
(target_variable_name , reference_variable_name , result_identifier)

Z.6.13.1 Fetch-Add

(1) A single fetch-add operation has the effect of placing the target variable’s value into the result variable while
indivisibly incrementing the value of the target variable by the value of the expression. Where s is a shared
integer name, e is an integer-valued expression, and r is an identifier of an integer variable

Mi~ fetchadd(s,e,r) � ≡
Mend(i)~s� = Mstart(i)~s� +Mstart(i)~e�
Mend(i)~r� = Mstart(i)~s�

(the meaning of fetch-add over an interval i, is the meaning of r at the end of i equals s at the start of i, an s
at the end of i equals the sum of s and e at the start of i)

(2) When two fetch-add operations target the same shared integer, the result is non-deterministic, however it
must be equivalent to some series of fetch-adds. Where s is a shared integer name, e1 and e2 are integer-
valued expressions, r1 and r2 are identifiers of integer variables, and F is the text fetchadd(s,e1,r1)&
fetchadd(s,e2,r2) :

Mi~F� ≡

Mend(i)~s� = Mstart(i)~s� +Mstart(i)~e1� +Mstart(i)~e2�
Mend(i)~r1� = Mstart(i)~s�
Mend(i)~r2� = Mstart(i)~s� +Mstart(i)~e1�
OR
Mend(i)~s� = Mstart(i)~s� +Mstart(i)~e1� +Mstart(i)~e2�
Mend(i)~r1� = Mstart(i)~s� +Mstart(i)~e2�
Mend(i)~r2� = Mstart(i)~s�

Chapter Z.6. Action Z.6.13. Combinable Operations

SAE INTERNATIONAL AS5506/Z BLESS Annex v0.9 Page 67 of 159

{k

{k

s = S

s = S + e1 + e2
r1 = S
r2 = S + e1

OR
s = S + e1 + e2
r1 = S + e2
r2 = S

fetchadd
(s, e1, r1)

fetchadd
(s, e2, r2)

Figure Z.6.3: Two Fetch-Adds

(the meaning of concurrent fetch-adds over an interval i, is the meaning of s at the end of i equals the sum
of s, e1, and e2 at the start of i, and either r1 at the end of i equals s at the start of i, and r2 at the end of i
equals the sum of s and e1 at the start of i, or r2 at the end of i equals s at the start of i, and r1 at the end of
i equals the sum of s and e2 at the start of i)

(3) If fetch-adds are executed in index order, 1 to n, then the target s will be incremented by the sum of the
expressions, each result r j is the sum of the target and all expressions e1 to e j − 1, and M is the text
fetchadd(s,e1,r1); . . . ; fetchadd(s,en,rn) :49

Mi~M� ≡

Mend(i)~s� = Mstart(i)~s� +
∑n

k=1Mstart(i)~ek�
Mend(i)~r1� = Mstart(i)~s�

∀ j ∈ 2..n |Mend(i)~r j� =
Mstart(i)~s�
+
∑ j−1

k=1Mstart(i)~ek�

(4) In the general case of n concurrent fetch-adds, requires use of non-deterministic permutations from §1.5.
For that, a sequence P is defined to be a permutation of the numbers 1 to n, to indicate any ordering of n
fetch-adds, with P(j) being the jth element in P, and P−1(j) being the index of the element of P that holds j.
Let C be the text fetchadd(s,e1,r1)& . . . & fetchadd(s,en,rn) :50

Mi~C� ≡

Mend(i)~s� = Mstart(i)~s� +
∑n

k=1Mstart(i)~ek�
∃P� (1, . . . , n) | ∀ j ∈ 1..n |

Mend(i)~r j� =
Mstart(i)~s�+∑P−1(j)−1

k=1 Mstart(i)~eP−1(k)�
(the target is incremented by sum of the fetch-add parameters; and the results if the fetch-adds occurred in
a arbitrary order)

(5) Sometimes, the return value of fetch-add is not needed and omitted. Let C2 be the text fetchadd(s,e1)&
. . . & fetchadd(s,en)

49semicolon separates elements of action sequences
50ampersand separates elements of action sets

Chapter Z.6. Action Z.6.13. Combinable Operations

SAE INTERNATIONAL AS5506/Z BLESS Annex v0.9 Page 68 of 159

{k

{k

s = S

s = S +
∑n

k=1 ek

r j = S +
∑P−1(j)−1

k=1 eP−1(k)

fetchadd
(s, en, rn)

fetchadd
(s, e1, r1)

Figure Z.6.4: Many Concurrent Fetch-Adds

Mi~C2� ≡ Mend(i)~s� = Mstart(i)~s� +
∑n

k=1Mstart(i)~ek�
(the target is incremented by sum of the fetch-add parameters)

(6) However, usually the parameter value is constant 1 or -1. Let I be the text “ fetchadd(s,1,r1)& . . .
& fetchadd(s,1,rn) ”

Mi~I� ≡
Mend(i)~s� = Mstart(i)~s� + n
∃P� (1, . . . , n) | ∀ j ∈ 1..n |
Mend(i)~r j� = Mstart(i)~s� + P−1(j) − 1

(the target is incremented by the number of fetch-add-one operations s + n; and the results are some non-
deterministic permutation of (s, . . . , s + n − 1))

That each of the results are both in range and different, will be used to for concurrently-accessible data
structures to assure interference-freedom. This is the classic ”Deli” algorithm wherein patrons take a ticket
with a number to await their turn to be served. Fetch-add-one allows an unlimited number of tickets to be
issued simultaneously.

(7) Complementing fetch-add-one, is the decrementing parameter -1. Let D be the text fetchadd(s,-1,r1)&
. . . & fetchadd(s,-1,rn) :

Mi~D� ≡
Mend(i)~s� = Mstart(i)~s� − n
∃P� (1, . . . , n) | ∀ j ∈ 1..n |Mend(i)~r j� = Mstart(i)~s� − P−1(j) + 1

Z.6.13.2 Fetch-And Fetch-Or Fetch-Xor

Logical operations can be combined too. However, until a need is found, they will be unimplemented.

Chapter Z.6. Action Z.6.13. Combinable Operations

SAE INTERNATIONAL AS5506/Z BLESS Annex v0.9 Page 69 of 159

Z.6.13.3 Swap

Dynamic data structures can be concurrently manipulated with swap acting on pointers, or references. How-
ever, reference types were deliberately omitted from the type system for BLESS. Therefore, swap is in the
grammar, but its use is uncertain, and currently unimplemented.

Chapter Z.6. Action Z.6.13. Combinable Operations

Chapter Z.7
Behavior Expression

Z.7.1 Value

(1) For threads, value has all the options as subprograms1 plus port values, a test of the current mode, and
reference to property constants for this component.

(2) Values are evaluated from incoming ports and parameters, local variables, referenced data subcomponents,
as well as port count, port fresh, and port dequeue.2

Grammar
value ::=

now | tops | timeout null | in mode ({ mode_identifier }+)
| value_constant | variable_name | function_call | port_value

now the present instant with type time

tops time-of-previous-suspension

timeout AADL runtime service for hybrid dispatch protocol threads: (now-tops) ≤ Timing Properties::Period

in mode is true when AADL mode is among those listed; false otherwise

value constant defined in §Z.7.2, Value Constant

variable name defined in §Z.7.3, Name

function call defined in §Z.7.8, Function Invocation

port value defined in §Z.7.9, Port Value

1see §Z.10.3
2BA D.7(3)

70

SAE INTERNATIONAL AS5506/Z BLESS Annex v0.9 Page 71 of 159

Z.7.2 Value Constant

(1) Value constants are Boolean, numeric or string literals, property constants or property values.3

Grammar
value_constant ::=

true | false | numeric_literal | string_literal
| property_constant | property_reference

(2) Numeric literals are defined in §2.4 Numeric Literals. String literals are defined in §2.5 String Literals.

Semantics

Mi~ true � ≡ > (the meaning of true is customary)
Mi~ false � ≡ ⊥ (the meaning of false is customary)

Z.7.2.1 Property Constant

(1) Property constants are values that are defined in AADL property sets.4

Grammar
property_constant ::=

property_set_identifier :: property_constant_identifier

Semantics

(S1) The meaning of property constants are defined by the AADL standard, AS5506C §11.1.3 Property Con-
stants.

Z.7.2.2 Property Reference

(1) Property values may be defined in property sets, or attached to a component or feature.5

Grammar
property_reference ::=

(# [property_set_identifier ::]
| component_element_reference #
| unique_component_classifier_reference #
| self)
property_name

(2) The property may be relative to the component containing the behavior annex subclause: a subcomponent,
a bound prototype, a feature, or the component itself.

3BA D.7(4)
4AS5506C §11.1.3 Property Constants
5BLESS Differs from BA: no local variable properties

Chapter Z.7. Behavior Expression Z.7.2. Value Constant

SAE INTERNATIONAL AS5506/Z BLESS Annex v0.9 Page 72 of 159

Grammar
component_element_reference ::=

subcomponent_identifier | bound_prototype_identifier
| feature_identifier | self

(3) Because AADL property values may be arrays or records, a property name may include array indices or
record field identifiers.

(4) When the property is a range, the upper bound or lower bound of the property value can be referenced using
upper_bound and lower_bound keywords.6

(5) When a property is a record, the field of a property value can be referenced using a dot separator between
the property identifier and the field identifier.7

(6) When a property is an array, elements of the property value can be referenced using an integer value between
brackets.8

Grammar

property_name ::= property_identifier { property_field }*
property_field ::=
[integer_value] | . field_identifier | . upper_bound | . lower_bound

(7) Property values may be from any component specified by its package name, type identifier, and optionally
implementation identifier.

unique_component_classifier_reference ::=
{ package_identifier :: }* component_type_identifier
[. component_implementation_identifier]

Z.7.3 Name

(1) A name is a sequence of identifiers, with optional array indices, separated by periods. Section §Z.8, Types,
defines the relationship between names and elements of values having constructed types: arrays, records,
and variants. A slice, or portion of an array, may be named by an integer-valued range as its array in-
dex.

Grammar
name ::=

root_identifier { [index_expression_or_range] }*
{ . field_identifier { [index_expression_or_range] }* }*

(2) An array index must be an integer-valued expression (§Z.7.4), or a slice defined as an integer-valued range:
lower bound .. upper bound.

index_expression_or_range ::= integer_expression [.. integer_expression]

6BA D.7(9)
7BA D.7(10)
8BA D.7(11)

Chapter Z.7. Behavior Expression Z.7.3. Name

SAE INTERNATIONAL AS5506/Z BLESS Annex v0.9 Page 73 of 159

Legality Rules

(L1) Array indices must be non-negative.

(L2) An array index or slice must be in the array’s range. Names with array indexes outside of the array’s range
have undefined value and have undefined type.

(L3) A slice’s lower bound must be at most its upper bound.

Semantics

(S1) Where x is a variable name,9 y is a value, s is a state, and the pair (x, y) ∈ s:

Ms~x� ≡ y (the meaning of a variable name in a state is its value)

Where a is an array name, i is an integer value or values for a multidimensional array, y is a value, s is a
state, and the pair (a[i], y) ∈ s:

Ms~a[i]� ≡ y (the meaning of an array in a state is the value associated with its index)

Where r is an record name, l is a label, y is a value, s is a state, and the pair (r.l, y) ∈ s:

Ms~r.l� ≡ y (the meaning of a record in a state is its value of its selected label)

Where v is a variant name with discriminator d, l is a label, y is a value, s is a state, and the pairs
(v.d, l), (v.l, y) ∈ s:

Ms~v.l� ≡ y (the meaning of a variant is the value of the element having the label of the discriminator)

Z.7.4 Expression

(1) An expression defines a value derived from other values by numeric or boolean operations. The type of
subexpressions must be compatible with the expression’s operator. The conditional boolean operators, and
then and or else, demand evaluation of its left-side subexpression before its right-side subexpression,
which is then evaluated only if it makes a difference to the result.10 The other numeric and boolean operators
have customary meanings.11

(2) Expressions have been defined to perform calculations with the complexity of programming languages
such as Ada.12 This expression language is derived from ISO/IEC 8652:1995(E), Ada95 Reference Manual
§4.4.13

Grammar
9A name may be a simple identifier, or a compound name using indexes and/or labels. Here that name must correspond to a variable. In

the following the name must correspond to an array, record or variant.
10BA R.7(12)
11BA D.7(1)
12BA D.7(2)
13BA D.7(5)

Chapter Z.7. Behavior Expression Z.7.4. Expression

SAE INTERNATIONAL AS5506/Z BLESS Annex v0.9 Page 74 of 159

expression ::= subexpression
[{ + numeric_subexpression }+
| { * numeric_subexpression }+
| - numeric_subexpression
| / numeric_subexpression
| mod natural_subexpression
| rem integer_subexpression
| ** numeric_subexpression
| { and boolean_subexpression }+
| { or boolean_subexpression }+
| { xor boolean_subexpression }+
| and then boolean_subexpression
| or else boolean_subexpression]

Legality Rules

(L1) Operators have no precedence; parentheses must disambiguate operator order.14

(L2) Operands of logical operators must be boolean.15

(L3) Operands of numeric operators must be numeric.16

Semantics

(S1) Where e and f are numeric-valued expressions, and A and B are boolean-valued expressions:

Mi~ e+f � ≡ Mi~e� +Mi~ f � (the meaning of + is addition)
Mi~ e*f � ≡ Mi~e� ×Mi~ f � (the meaning of * is multiplication)
Mi~ e-f � ≡ Mi~e� −Mi~ f � (the meaning of - is subtraction)
Mi~ e/f � ≡ Mi~e� ÷Mi~ f � (the meaning of / is division)
Mi~ e**f � ≡ Mi~e�Mi~ f � (the meaning of ** is exponentiation)
Mi~ e mod f � ≡ Mi~e� mod Mi~ f � (the meaning of mod is modulus)
Mi~ e rem f � ≡ Mi~e� − (Mi~ f � × (Mi~e� ÷Mi~ f �)) (the meaning of rem is remainder)17

Mi~A and B� ≡ Mi~A� ∧Mi~B� (the meaning of and is conjunction)
Mi~A or B� ≡ Mi~A� ∨Mi~B� (the meaning of or is disjunction)
Mi~A xor B� ≡ Mi~A� ⊕Mi~B� (the meaning of xor is exclusive-disjunction)

Mi~A and then B� ≡
Mi~A�→ Mi~B�
¬Mi~A�→ ⊥

(second term not evaluated if first term is false)18

Mi~A or else B� ≡
Mi~A�→ >
¬Mi~A�→ Mi~B�

(second term not evaluated if first term is true)19

14BLESS Differs from BA: operator precedence
15BA D.7(L3)
16BA D.7(L5)
17Reconciliation: rem
18Reconciliation: and then
19Reconciliation: or else

Chapter Z.7. Behavior Expression Z.7.4. Expression

SAE INTERNATIONAL AS5506/Z BLESS Annex v0.9 Page 75 of 159

Z.7.5 Subexpression

(1) A subexpression allows negation, complement and grouping with parentheses, or is a conditional expression
(§Z.7.6).

Grammar
subexpression ::=

[- | not | abs]
(value | (expression_or_relation)

| conditional_expression | case_expression)

expression_or_relation ::= subexpression [relation_symbol subexpression]

Semantics

(S1) Where e is a numeric-valued expression, A is a boolean-valued expression, and c, d are expres-
sions:

Mi~ -e � ≡ 0 −Mi~ e � (the meaning of - is negation)
Mi~ abs e � ≡ Mi~ (if e>=0 then e else -e) � (the meaning of abs is absolute value)20

Mi~ not A � ≡ ¬Mi~ A � (the meaning of not is complement)
Mi~ (A) � ≡ Mi~ A � (the meaning of parenthesis is its contents)
Mi~c=d� ≡ Mi~c� = Mi~d� (the meaning of = is equality)
Mi~c<>d� ≡ Mi~c!=d� ≡ Mi~c� , Mi~d� (the meaning of != is inequality)21

Mi~c<d� ≡ Mi~c� < Mi~d� (the meaning of < is less than)
Mi~c>d� ≡ Mi~c� > Mi~d� (the meaning of > is greater than)
Mi~c<=d� ≡ Mi~c� ≤ Mi~d� (the meaning of <= is at most)
Mi~c>=d� ≡ Mi~c� ≥ Mi~d� (the meaning of >= is at least)

Z.7.6 Conditional Expression

(1) A conditional expression determines the value of an expression by evaluating a boolean expression or rela-
tion, then choosing between alternative expressions, returning the first if true or the second if false.

Grammar
conditional_expression ::=
(boolean_expression_or_relation ?? expression : expression)

| (if boolean_expression_or_relation then expression else expression)

Semantics

(S1) Where t and f are expressions and B is a boolean-valued expression or relation:

20Reconciliation: absolute value
21Reconciliation: inequality

Chapter Z.7. Behavior Expression Z.7.5. Subexpression

SAE INTERNATIONAL AS5506/Z BLESS Annex v0.9 Page 76 of 159

Mi~ (if B then t else f) � ≡ Mi~ (B??t:f) � ≡
Mi~B�→ Mi~t�
¬Mi~B�→ Mi~f�

(choose first expression if true; second expression if false)

Consistency Rule

(C1) All expressions of a conditional expression must have the same type.

Examples� �
(if SensorConnected? and not MotionArtifact? then SpO2? else 0)
(lrl<(dn_siri<down??dn_siri:down)??lrl:(dn_siri<down??dn_siri:down))� �
Z.7.7 Case Expression

(1) A case expression extends the conditional expression to more than two choices. If one guard (boolean
expression or relation) of a case choice is true, then the value of the case expression is the expression of
that choice. If more than one case choice guard is true, the value is chosen non-deterministically from their
expressions. If no case choice guard is true, the value is null.

Grammar

case_expression ::= (case_choice { , case_choice }+)

case_choice ::= (boolean_expression_or_relation) -> expression

Semantics

(S1) Where B1 . . . Bj are boolean-valued expressions or relations, and e1 . . . ej are expressions of the
same type:

Mi~ ((B1)->e1, ..., (Bj)->ej) � ≡

Mi~B1�→ Mi~e1�
. . .

Mi~Bj�→ Mi~ej�
¬Mi~B1� ∧ . . . ∧ ¬Mi~Bj�→ ⊥

(choose expression with true guard, or null if all guards are false)

Consistency Rule

(C1) All expressions of case choices in a case expression must have the same type.

Chapter Z.7. Behavior Expression Z.7.7. Case Expression

SAE INTERNATIONAL AS5506/Z BLESS Annex v0.9 Page 77 of 159

Z.7.8 Function Invocation

(1) A function call is the invocation of a subprogram having a special form.22 AADL subprogram components
that may be invoked as functions must have one out parameter, preceded by any number of in parame-
ters.� �
subprogram f
features

p1 : in parameter t1;
.
.
.

pk : in parameter tk;
result : out parameter resultType;

annex Action {** . . . **};
end mul;� �

(2) The identifiers of the formal parameters in a function call, correspond to the in parameters of the AADL
subprogram component. Subprograms invoked as functions must use formal-actual pairs as arguments.
These substitutions of actual for formal parameters are applied to the subprogram’s pre- and post-conditions
when verification conditions for function invocation are generated.

(3) Subprograms in other packages may be invoked as functions by prefacing their identifier with package
identifiers separated by double colons.23

Grammar
function_call ::=
{ package_identifier :: }* function_identifier ([function_parameters])

function_parameters ::= formal_expression_pair { , formal_expression_pair }*
formal_expression_pair ::= formal_identifier => actual_expression

Semantics

(S1) Where C is the name of a function having formal parameters f1, . . . , fk, and e1, . . . , ek are expressions:

Mi~C(f1 ⇒ e1, . . . , fk ⇒ ek)� ≡ M~C�(f1 ⇒ Mi~e1�, . . . , fk ⇒ Mi~ek�)
(the meaning of a function call, is the meaning of its name, applied to the meanings of its parameters)

Legality Rule

(L1) Subprograms invoked as functions must have all but the last parameter an in parameters, and the last
parameter must be an out parameter.

(L2) Subprograms invoked as functions must be side-effect free; their only result is the value returned.

Examples

22Ordinarily, function calls cannot be used within expressions, because AADL doesnt have a pure function, distinct from its subprogram
classifier. Because an AADL subprogram is not limited to determining its return value solely from passed values, evaluation of AADL
subprograms may have side effects. Functions are AADL subprograms that are purely functional. Then function calls can be used in
expressions within BA2015.

23Reconciliation: removed $ from function invocation

Chapter Z.7. Behavior Expression Z.7.8. Function Invocation

SAE INTERNATIONAL AS5506/Z BLESS Annex v0.9 Page 78 of 159

This example shows the use of variable labels as temporary variables to pass data between successive
actions.� �
data number
end number;

subprogram mul
features

--this is in the special form for a subprogram to be a function,
--single out parameter preceded by any number of in parameters
--may invoked within expressions as mul(e1,e2),
--or actions as mul(v1,v2,v3)
x : in parameter number;
y : in parameter number;
z : out parameter number;

annex Action {**
post z=x*y --postcondition relating result to values of inputs
{ z := x*y <<z=x*y>> }

**};
end mul;

subprogram cube
features --cube is also a function

x : in parameter number;
y : out parameter number;

--features other than parameters follow the out parameter
mul : requires subprogram access mul;

annex Action {**
post y=x*x*x
variables --existential quantification introduces local variables

tmp : number;
{ mul(x,x,tmp) --invoke mul as subprogram

; <<tmp=x*x>> --sequential composition
y := mul(tmp,x) <<y=x*x*x>> } --invoke mul as function

**};
end cube;� �
Z.7.9 Port Value

(1) The core language defines that data from data ports is made available to the application source code
(and Behavior Specification) through a port variable with the name of the port. If no new value is available
since the previous freeze, the previous value remains available and the variable is marked as not fresh.
Freshness can be tested in the application source code via service calls24 and in the Behavior Specifcation
via functions.25

Grammar

port_value ::= in_port_name (? | ’count | ’fresh | ’updated)26

24AS5506C §8.3.5 Runtime Support for Ports
25BLESS Differs from BA: port names must have suffix: ? or ’
26BLESS Differs from BA: port identifiers must have ? or ’

Chapter Z.7. Behavior Expression Z.7.9. Port Value

SAE INTERNATIONAL AS5506/Z BLESS Annex v0.9 Page 79 of 159

(2) The meaning of port values is defined in ??, In Event Data Ports.

Chapter Z.7. Behavior Expression Z.7.9. Port Value

Chapter Z.8
Type

Z.8.1 Ideal Types

(1) The AADL core language forces subprogram parameters to be some kind of data. The core grammar allows
either data types, or data implementations.

(2) The AADL Data Modeling Annex1 defines data component classifiers that express the type and represen-
tation of values exchanged by active AADL components. This allows interoperability between languages,
operating systems, hardware architectures etc. Definitions of BLESS types include Data Modeling Annex
equivalents.

(3) SAE International Document AS5506B defines property types in section §11.1.1. BLESS types are equiv-
alent to AADL property types, removing “aadl” from its reserved word to get the BLESS equivalent. Often,
values defined as AADL properties need to be used in behaviors and specifications. The equivalence be-
tween BLESS and AADL property types make type checking of AADL properties used in BLESS programs
straightforward.

Table Z.8.1: AADL and BLESS Type Equivalences
AADL Type BLESS Type
aadlreal real

aadlinteger integer
aadlboolean boolean
aadlstring string

BLESS also has ideal types for natural, non-negative integers, rational, a ratio of integers, time, real
number restricted to a type of time, and complex, a pair of reals.

1SAE International Document AS5506/2, January 2011

80

SAE INTERNATIONAL AS5506/Z BLESS Annex v0.9 Page 81 of 159

Z.8.2 Types are Sets

(1) A type is a set of values. The universe of all values, V, contains all simple values like integers and strings,
and all compound values like arrays, records, and variants. A type is a set of elements of V. Moreover when
ordered by set inclusion, V forms a lattice of types. The top of this lattice is the set of all values or V itself.
The bottom of the lattice is the empty set. The types used by any programming language is only a small
subset of V. This chapter defines a type expression language, and mapping from type expressions to sets of
values.

(2) Since types are sets, subtypes are subsets. Moreover the semantic assertion“T1 is a subtype of T2” corre-
sponds to the mathematical condition T1 ⊆ T2 in V. Subtyping in the basis for type checking.

Z.8.3 BLESS Type Grammar

(1) BLESS uses simple grammar to express simple, constructed types. All persistent values for variables will be
statically mapped to memory addresses. No heap is needed. Stack frames will have fixed known size. Re-
cursion prohibition limits stack depth. Much of the safety of BLESS-controlled systems comes from locking-
down the type system.

Type expressions may be:

name reference to an AADL data component type having BLESS::Typed property.

number natural , integer , rational , real , complex , with optionally a range, a unit, or both.

enumeration set of identifier labels

array set of elements indexed by natural number(s)

record set of labelled elements

variant one element from a set of elements determined by an identifier discriminator

boolean either true or false

string sequence of characters, §2.5

Grammar
type ::= data_component_name | number_type | enumeration_type

| array_type | record_type | variant_type | boolean | string2

(2) BLESS has no unit type. Therefore unit types in BLESS must be declared as AADL property types.

(3) An AADL package is provided, BLESS_Types that extend those in Base_Types package defined in the
Data Model Annex document. In particular, BLESS_Types have a BLESS_Properties::Supported_Operators
list of operator symbols for types that support arithmetic. Similarly, a BLESS_Properties::Supported_Relations
list of relation symbols defines what relations can be applied to the type. More information about BLESS_Types
and BLESS_Properties can be found in Chapter §3 BLESS Package and Properties.

2BLESS Differs from BA: BA has no types

Chapter Z.8. Type Z.8.2. Types are Sets

SAE INTERNATIONAL AS5506/Z BLESS Annex v0.9 Page 82 of 159

Z.8.4 Data Components as Types

(1) A type may refer to a data component. Data components in other packages may be referenced by a se-
quence of3 package identifiers separated by double colon. Implementation names are formed by suffixing
an identifier to the name of the data component implemented separated by a period.4

Grammar
data_component_name ::=

{ package_identifier :: }* data_component_identifier
[. implementation_identifier]

Legality Rule

(L1) A type name must refer to a visible data component.

Semantics

(S1) The meaning of a type name is the BLESS::Typed property of the data component to which it refers.

Example� �
data ResponseFactor --to motion

properties
BLESS::Typed=>"integer 1..16";

end ResponseFactor;� �
Z.8.5 Enumeration Type

(1) An enumeration type is a sequence of identifiers. Enumeration types are expressed as the reserved word
enumeration followed by a sequence of identifiers enclosed in parentheses.

Grammar
enumeration_type ::= enumeration

(defining_enumeration_literal_identifier
{ , defining_enumeration_literal_identifier }*)

Property Type

(2) The AADL property type equivalent to enumeration (a b c) is enumeration (a b c) .

Data Model

(3) The Data Model equivalent to enumeration (a b c) is� �
data EnumType

Data_Model::Data_Representation => Enum;
Data_Model::Enumerators => ("a", "b", "c");

end EnumType;� �
3Reconciliation: multiple identifier package names
4In AADL grammar, an italicized prefix of a component name is merely descriptive.

Chapter Z.8. Type Z.8.4. Data Components as Types

SAE INTERNATIONAL AS5506/Z BLESS Annex v0.9 Page 83 of 159

and then using EnumType in its place, prefaced by its package name if declared in a different pack-
age.

(4) In general, where s is a sequence of identifiers separated by spaces, s′ is that same sequence of identifiers
enclosed in double quotes separated by commas, N is an data component identifier, and P is a package
prefix so that P::N is a legal type name, enumeration (s) ≡ P :: N such that in package P there
is,� �
data N

Data_Model::Data_Representation => Enum;
Data_Model::Enumerators => (s’);

end N;� �
Example� �

data Alarm_Type
properties

BLESS::Typed=>"enumeration (Pump_Overheated,Defective_Battery,Low_Battery,
POST_Failure,RAM_Failure,ROM_failure,CPU_Failure,Thread_Monitor_Failure,
Air_In_Line,Upstream_Occlusion,Downstream_Occlusion,Empty_Reservoir,
Basal_Overinfusion,Bolus_Overinfusion,Square_Bolus_Overinfusion,No_Alarm)";

Data_Model::Data_Representation => Enum;
Data_Model::Enumerators => ("Pump_Overheated","Defective_Battery","Low_Battery",

"POST_Failure","RAM_Failure","ROM_failure","CPU_Failure","Thread_Monitor_Failure",
"Air_In_Line","Upstream_Occlusion","Downstream_Occlusion","Empty_Reservoir",

"Basal_Overinfusion","Bolus_Overinfusion","Square_Bolus_Overinfusion","No_Alarm");
end Alarm_Type;� �
Z.8.6 Number Type

(1) A number type is the name of a data component that behaves like an indivisible number, possibly restricted to
a subrange, and may have units. The time type is equivalent to real , but restricted to time units.

Grammar
number_type ::=

(natural | integer | rational | real | complex | time)
[constant_number_range] [units aadl_unit_literal_identifier]

constant_number_range ::=
[[-] numeric_constant .. [-] numeric_constant]

numeric_constant ::= numeric_literal | numeric_property

(2) Number types may be restricted to a range.

Legality Rules

(L1) A number type name (its component classifier reference) must have a corresponding data component.

(L2) The upper and lower bounds of a range must have the same type as that named.

Chapter Z.8. Type Z.8.6. Number Type

SAE INTERNATIONAL AS5506/Z BLESS Annex v0.9 Page 84 of 159

(L3) A time type may only have units defined by AADL_Project::Time_Units : ps, ns, us, sec, min,
hr.

Naming Rule

(N1) A unit identifier must correspond to an AADL property unit type.

Semantics

(S1) Number types are sets (§1.1):

natural ≡ N0 denotes the set of all natural numbers, including 0;

integer ≡ Z denotes the set of all integers;

rational ≡ Q denotes the set of rational numbers;

real ≡ R denotes the set of real numbers;

complex ≡ C denotes the set of complex numbers;

time ≡ R equivalent to real, having time units.

AADL Property

(3) AADL property types for integers and real numbers have the same grammar as BLESS, except that aadlinteger
replaces integer, aadlreal replaces real, and constant number ranges may have superfluous unary
plus.

(4) AADL property types define a range type which does not define the end points of the range. There is no
equivalent to this in BLESS; number types restricted to range must define range bounds.

Data Model

BLESS types are pure types, with unbounded magnitude. These are the closest (finite) Data Model repre-
sentations.

natural Base Types::Natural

integer Base Types::Integer

rational Base Types::Float

real Base Types::Float

time Timing Properties::Time (predeclared AADL property type)

complex� �
data Complex

properties
Data_Model::Data_Representation => Struct;
Data_Model::Base_Type => (classifier(Base_Types::Float), classifier(Base_Types::Float));
Data_Model::Element_Names => ("re", "im"); --real and imaginary parts

end Complex;� �

Chapter Z.8. Type Z.8.6. Number Type

SAE INTERNATIONAL AS5506/Z BLESS Annex v0.9 Page 85 of 159

Z.8.7 Array Type

(1) An array type is a collection indexed by natural numbers. The natural numbers in an array type expression
denote the size of the array in successive dimensions. The sizes may be expressed as natural literals, or
identifiers of natural number values.5

Grammar

array_type ::= array [array_range_list] of type

array_range_list ::= natural_range { , natural_range }*
natural_range ::= natural_number [.. natural_number]

natural_number ::=
natural_integer_literal | natural_constant_identifier | natural_property

Legality Rule

(L1) For all ranges of natural numbers a and b, used to define ranges a..b, a must be at most b, a ≤ b.

Data Model

(2) The Data Model for arrays uses the property Data_Model::Slice to define ranges for each array
dimension rather than the property Data_Model::Dimension which only defines the array size. An
single integer literal array dimension is interpreted as a range from zero. The Data Model equivalent to
array [5, 0..15, May..October] of MyPackage::MyElementType
is� �
data My_Three_Dimensional_Array

properties
Data_Model::Data_Representation => Array;
Data_Model::Base_Type => (classifier (MyPackage::MyElementType));
Data_Model::Slice => (0..4, --5 becomes 0..4

0..15, --same range of natural literals
May..October); --May and October must identify natural values

end My_Three_Dimensional_Array� �
(3) In general, where n is a sequence of positive integer literals, integer ranges (i.e. 1..10), n′ is that same

sequence separated by commas having single integer literals replaced by integer ranges starting at zero,
and E and T are data component identifiers, and P and R are package prefixes so that P::T and R::E
are legal type names, array [n] of R :: E ≡ P :: T such that in package P there is,� �
data T

Data_Model::Data_Representation => Array;
Data_Model::Base_Type => (classifier (R::E));
Data_Model::Slice => (n’);

end T;� �
(4) The Data Model also allows Data_Model::Dimension to be used which may only be a list of integer

literals. The equivalent array type uses the same list without commas

5Enumeration types for array indices were removed in v0.13 June 2010. Negative array indices are thus disallowed.

Chapter Z.8. Type Z.8.7. Array Type

SAE INTERNATIONAL AS5506/Z BLESS Annex v0.9 Page 86 of 159

Example� �
data Fault_Log --holds records of faults

properties
BLESS::Typed => "array [PCA_Properties::Fault_Log_Size] of PCA_Types::Fault_Record";
Data_Model::Data_Representation => Array;
Data_Model::Base_Type => (classifier(Fault_Record));
Data_Model::Dimension => (PCA_Properties::Fault_Log_Size);

end Fault_Log;� �
Z.8.8 Record Type

(1) A record type is a collection of types indexed by identifier labels.

Grammar

record_type ::= record ({ record_field }+)

record_field ::= defining_field_identifier : type ;

Data Model

The Data Model equivalent to record (l1:T1; l2:T2;) is� �
data My_Record

properties
Data_Model::Data_Representation => Struct;
Data_Model::Base_Type => (classifier (T1), classifier (T2));
Data_Model::Element_Names => ("l1", "l2");

end My_Record;� �
(2) In general, where S is a sequence of pairs of labels and type names, where each label is separated from

its type name by a colon and followed by a semicolon,6 B is a sequence of the second elements of those
pairs (type names) of S enclosed in parentheses prefaced by classifier separated by commas,7 and L
is a sequence of the first elements of those pairs (labels) of S enclosed in double-quotes and separated by
commas,8 and P is package prefix so that P::T is a legal type name, record (S) ≡ P :: T such that
in package P there is,� �
data T

Data_Model::Data_Representation => Struct;
Data_Model::Base_Type => (B);
Data_Model::Element_Names => (L);

end T;� �
(3) The Data Model Annex shows an alternate way to represent records (structs) using subcomponents of data

component implementations to represent record elements. These are not supported by BLESS. Use the
Data Model properties instead.

6i.e. l1:T1; l2:T2; l3:T3
7i.e. classifier (T1), classifier (T2), classifier(T3)
8i.e. “l1”, “l2”, “l3”

Chapter Z.8. Type Z.8.8. Record Type

SAE INTERNATIONAL AS5506/Z BLESS Annex v0.9 Page 87 of 159

Example� �
data Fault_Record --record of fault for log

properties
BLESS::Typed => "record (alarm:Alarm_Type; warning:Warning_Type;

occurrence_time:BLESS_Types::Time;)";
Data_Model::Data_Representation => Struct;
Data_Model::Element_Names => ("alarm","warning","occurrence_time");
Data_Model::Base_Type => (classifier(Alarm_Type),classifier(Warning_Type),

classifier(BLESS_Types::Time));
end Fault_Record;� �
Z.8.9 Variant Type

A variant type holds a value of varying type specified by the value of a discriminant. A discriminant holds the
value of one of the labels of the record fields, which then determines the type of the variant.

Grammar

variant_type ::= variant [discriminant_identifier] ({ record_field }+)

Legality Rules

(L1) A value of variant type may only have its discriminant set at creation; discriminants may never be the subject
of assignment.

(L2) A value of variant type has the type indicated by its discriminant; accessing that value as any other type is
an error.

Data Model

The Data Model equivalent to variant [d](c1:T1; c2:T2;) is� �
data My_Variant

properties
Data_Model::Data_Representation => Union;
Data_Model::Base_Type => (classifier (T1), classifier (T2));
Data_Model::Element_Names => ("c1", "c2");

end My_Variant� �
(1) In general, where S is a sequence of pairs of labels and type names, where each label is separated from

its type name by a colon and followed by a semicolon,B is a sequence of the second elements of those
pairs (type names) of S enclosed in parentheses prefaced by classifier separated by commas,and
L is a sequence of the first elements of those pairs (labels) of S enclosed in double-quotes and separated
by commas,d is a discriminant identifier, and P is package prefix so that P::T is a legal type name,
variant [d](S) ≡ P :: T such that in package P there is,� �
data T

Data_Model::Data_Representation => Union;
Data_Model::Base_Type => (B);
Data_Model::Element_Names => (L);

end T;� �
Chapter Z.8. Type Z.8.9. Variant Type

SAE INTERNATIONAL AS5506/Z BLESS Annex v0.9 Page 88 of 159

(2) The Data Model Annex shows an alternate way to represent variants (unions) using subcomponents of data
component implementations to represent record elements. These are not supported by BLESS. Use the
Data Model properties instead.

Example� �
data Event_Record --record of event for log

properties
BLESS::Typed => "variant (start_patient_bolus:Start_Patient_Bolus_Event;
stop_patient_bolus:Stop_Patient_Bolus_Event;)";

Data_Model::Data_Representation => Union;
Data_Model::Base_Type => (classifier (Start_Patient_Bolus_Event),
classifier (Stop_Patient_Bolus_Event));

Data_Model::Element_Names => ("start_patient_bolus", "stop_patient_bolus");
end Event_Record;� �
Z.8.10 Type Inclusion Rules

A type is included in another type t ⊆ s when every value of one type is also a value of the other. t ⊆
s ≡ ∀v ∈ t|v ∈ s

In the following type rules,

• type expressions are denoted by s, t, and u,

• s → t is a function with domain s and range t;9

• type names by a and b, and element labels by L;

• V is the set of all values;

• d is a discriminant label;

• C is a set of inclusion constraints for types;

• C.a ⊆ b is the set C extended with the constraint that type a is included in b;

• C |= t ⊆ s is an assertion that from C we can infer t ⊆ s.

[TOP]: C |= t ⊆V (every type is included in the set of all values)

[VAR]: C.a ⊆ t |= a ⊆ t (what it means to extend a type constraint)

[BAS]: C |= a ⊆ a (every type includes itself)
9see §Z.7.8 Function Invocation for the form of AADL subprograms to be used as a function by BLESS. For functions with k parameters,

s is a tuple of types (s1, . . . , sk).

Chapter Z.8. Type Z.8.10. Type Inclusion Rules

SAE INTERNATIONAL AS5506/Z BLESS Annex v0.9 Page 89 of 159

[TRANS]:
C |= s ⊆ t ∧ C |= t ⊆ u

C |= s ⊆ u
(type inclusion is transitive)

[FUN]:
C |= s ⊆ s1 ∧C |= t ⊆ t1
C |= (s→ t) ⊆ (s1 → t1)

(a function type includes another when its domain includes the other’s domain

and its range includes the other’s range)

[CAR]:
C |= s ⊆ t ∧ n ≤ m

C |= array [n] of s ⊆ array [m] of t

(an array type includes another when its element type includes the other’s element type, and the other has
at most as many elements)

[CARM]:
C |= s ⊆ t

C |= array [n1, n2, . . . , nk] of s ⊆ array [n1, n2, . . . , nk] of t

(a multi-dimensional array includes another when its element type includes the other’s element type, and
has exactly the same dimensions)

[SLICE]:
C |= s ⊆ t ∧ d ≤ a ∧ b ≤ e

C |= array [a..b] of s ⊆ array [d..e] of t

(an array slice includes another when its element type includes the other’s element type, and its range
includes the other’s range)

[SLICEM]:
C |= s ⊆ t ∧ ∀i ∈ {1, ..., k}|di ≤ ai ∧ bi ≤ ei

C |= array [a1..b1, . . . , ak..bk] of s ⊆ array [d1..e1, . . . , dk..ek] of t

(a multi-dimensional slice includes another when its element type includes the other’s element type, and for
each dimension its range includes the other’s range)

[RECD]:
C |= s1 ⊆ t1 ∧ · · · ∧C |= sn ⊆ tn

C |= record (L1 : s1; . . . Ln : sn; . . . Lm : sm;) ⊆ record (L1 : t1; . . . Ln : tn;)

(a record type includes another when the other has elements the same labels, and perhaps additional others,
and for each label the corresponding element type includes the other’s element type for that label)

Chapter Z.8. Type Z.8.10. Type Inclusion Rules

SAE INTERNATIONAL AS5506/Z BLESS Annex v0.9 Page 90 of 159

[VART]:
C |= s1 ⊆ t1 ∧ · · · ∧C |= sn ⊆ tn

C |= variant (L1 : s1; . . . Ln : sn;) ⊆ variant (L1 : t1; . . . Ln : tn;)

(a variant type includes another when the other has elements the same labels, and for each label the corre-
sponding element type includes the other’s element type for that label)

Z.8.11 Type Rules for Expressions

(1) Type rules for expressions determine types of expressions, especially complex names.

(2) Relation symbols, = !=, are treated as functions of pairs of the same element type to boolean , (s, s) →
boolean , and are defined for every type s.

Relation symbols, < <= >= >, are treated as functions of pairs of the same element type to boolean ,
(s, s) → boolean , and are pre-defined for types natural integer rational real complex
.

(3) Numeric operator symbols, + *, are treated as functions of sequences of the same element type to that
element type, (s, . . . , s) → s, and are pre-defined for types natural integer rational real
complex .

Numeric operator symbols, - / mod rem **, are treated as functions of pairs of the same element type
to that element type, (s, s) → s, and are pre-defined for types natural integer rational real
complex .

Unary - is arithmetic negation, s→ s, and is pre-defined for types integer rational real complex
.

(4) Logical operator symbols, and or xor, are treated as functions of sequences of boolean to boolean
, (boolean , . . . , boolean)→ boolean .

Logical operator symbols, cand cor, are treated as functions of pairs of boolean to boolean , (
boolean , boolean)→ boolean .

Unary not is complement, boolean → boolean .

(5) In the following type rules,

A is a set of type assumptions for variables;

C is a set of inclusion constraints for types;

V is the set of all values;

e is an expression;

s, t are types;

s → t is a function with domain s and range t;10

10For functions with k parameters, s is a tuple of types (s1, . . . , sk).

Chapter Z.8. Type Z.8.11. Type Rules for Expressions

SAE INTERNATIONAL AS5506/Z BLESS Annex v0.9 Page 91 of 159

x is a variable;

L is a field label;

d is a discriminant label;

A.x : t is the set A extended with the assumption that variable x has type t;

C, A |= e : t means that from the set of constraints C and the set of type assumptions A, we can infer that
expression e has type t;

f : s→ t means f is a function with domain type s and range type t:11

subprogram f features x:in parameter s; y:out parameter t; end f;

[ETOP]: C, A |= e :V (the type of every expression is included in the set of all values)

[EVAR]: C, A.e : t |= e : t (define extending a type assumption)

[ETRANS]:
C, A |= e : t ∧ C |= t ⊆ u

C, A |= e : u
(type inclusion is transitive for expressions too)

[APPL]:
C, A |= f : s→ t ∧C, A |= x : s

C, A |= f (x) : t
(a function of type s→ t, applied to a parameter with type s, has type t)

[ECAR]:
C |= x : array [n] of s ∧ 0 ≤ m < n

C |= x[m] : s
(indexing a variable of array type has the array’s element type)

[ECARM]:

C |= x : array [n1, n2, . . . , nk] of s
0 ≤ m1 < n1 ∧ · · · ∧ 0 ≤ mk < nk

C |= x[m1,m2, . . . ,mk] : s
(indexing a variable of multi-dimensional array type has the

array’s element type)

[SEL]:
C, A |= x : record (L1 : t1; . . . Ln : tn;)

C, A |= x.Li : ti i ∈ 1..n
(selecting a label of a variable having record type, has the type of

the labeled element)

[VSEL]:
C, A |= x : variant [d](L1 : t1; . . . Ln : tn;)

C, A |= x.Li : ti iff x.d = Li i ∈ 1..n
(selecting a label of a variable having variant type, has the

type of the labeled element, only when the label is same as the discriminant)

11see §Z.7.8 Function Invocation for the form of AADL subprograms to be used as a function by BLESS.

Chapter Z.8. Type Z.8.11. Type Rules for Expressions

Chapter Z.9
Assertion

(1) Assertion properties may be attached to AADL component features, behavior states, interlaced through
actions, or express invariants, and have three forms: predicates, functions, and enumerations.

(2) Assertion annex libraries hold labelled Assertions in AADL packages.

(3) Assertion-predicates declare truth.

(4) Assertion-functions declare value. Assertion-functions specify meaning for data ports or other things with
value, or used with other Assertion-functions or Assertions.

(5) Meaning for enumeration-typed ports and variables use Assertion-enumerations –a kind of Assertion-function
with special grammar associating enumeration identifiers with predicates.

Z.9.1 Assertion Annex Library

(1) AADL packages may have annex libraries, not attached to any particular component.1 An annex library is
distinguished by the reserved word annex , followed by the identifier of the annex, and user-defined text
between {** and **} , terminated with a semicolon.

(2) An assertion annex library contains at least one assertion.

Grammar

assertion_annex_library ::= annex Assertion {** { assertion }+ **} ;

Example

AADL source code for an assertion annex library used in the definition of behavior of a pulse oximeter:

1AS5506B §4.8 Annex Subclauses and Annex Libraries

92

SAE INTERNATIONAL AS5506/Z BLESS Annex v0.9 Page 93 of 159

� �
annex Assertion
{** --annex library holding BLESS Assertions

<<SPO2_LOWER_LIMIT_ALARM: :SensorConnected and not MotionArtifact and
(SpO2 < SpO2LowerLimit)>>

<<HEART_RATE_LOWER_LIMIT_ALARM: :SensorConnected and not MotionArtifact and
(HeartRate < HeartRateLowerLimit)>>

<<HEART_RATE_UPPER_LIMIT_ALARM: :SensorConnected and not MotionArtifact and
(HeartRate > HeartRateUpperLimit)>>

<<SPO2_AVERAGE: :=
--the sum of good SpO2 measurements
(sum i:integer in -SpO2MovingAvgWindowSamples..-1 of

(SensorConnectedˆ(i) and not MotionArtifactˆ(i)??SpO2ˆ(i):0))
/ --divided by the number of good SpO2 measurements
(numberof i:integer in -SpO2MovingAvgWindowSamples..-1

that (SensorConnectedˆ(i) and not MotionArtifactˆ(i)))>>
<<SUPPL_O2_ALARM: :SupplOxyAlarmEnabledˆ0 and

(SPO2_AVERAGE())ˆ0 < (SpO2LowerLimitˆ0+SpO2LevelAdjˆ0)>>
<<RAPID_DECLINE_ALARM: :AdultRapidDeclineAlarmEnabled and

(exists j:integer in 1 .. NUM_WINDOW_SAMPLES()
that (SpO2 <= (SpO2ˆ(-j) - MaxSpO2Decline)))>>

<<MOTION_ARTIFACT_ALARM: :all j:integer
in 0 ..PulseOx_Properties::Motion_Artifact_Sample_Limit
are (MotionArtifactˆ(-j) or not SensorConnectedˆ(-j))>>

<<SPO2_TREND: : all s:integer in 1 ..num_samples
are SpO2Trend[s]=(MotionArtifactˆ(-s) or

not SensorConnectedˆ(-s)??0:SpO2ˆ(-s))>>
<<HR_TREND: : all s:integer in 1 ..num_samples are HeartRateTrend[s]=

(MotionArtifactˆ(-s) or not SensorConnectedˆ(-s)??0:HeartRateˆ(-s))>>
<<AXIOM_CR: :(num_samples-2)<(num_samples-1)>>

**};� �
Z.9.2 Assertion

(1) In Behavior Language for Embedded Systems with Software (BLESS), an assertion is a temporal logic
formula enclosed between << and >>.

Grammar
assertion ::=
<< (assertion_predicate

| assertion_function
| assertion_enumeration
| assertion_enumeration_invocation) >>

Z.9.2.1 Formal Assertion Parameter

(1) Assertions may have formal parameters.

Grammar

Chapter Z.9. Assertion Z.9.2. Assertion

SAE INTERNATIONAL AS5506/Z BLESS Annex v0.9 Page 94 of 159

formal_assertion_parameter ::= parameter_identifier [˜ type_name]

formal_assertion_parameter_list ::=
formal_assertion_parameter { , formal_assertion_parameter }*

Types for assertion parameters may be data component names, or the reserved word for one of the built-in
BLESS types. Types and type checking is defined in .

Grammar
type_name ::=

{ package_identifier :: }* data_component_identifier
[. implementation_identifier]

| natural | integer | rational | real
| complex | time | string

Z.9.2.2 Assertion-Predicate

(1) Most Assertions will be predicates and may have a label by which other Assertions can refer to it. An
assertion-predicate may have formal parameters. If so an assertion-predicate’s meaning is textual substitu-
tion of actual parameter for formal parameters throughout the body of the assertion.2

Grammar
assertion_predicate ::=

[label_identifier : [formal_assertion_parameter_list] :] predicate

(2) If an assertion has no parameters, occurrences of its invocation may be replaced by the text of its predicate.
If an assertion has parameters, its label and actual parameters, may be replaced by its predicate with formal
parameters replaced by actual parameters.

(3) Any entity may have its BLESS::Assertion property associated with the label of an assertion in an
assertion annex library.

(4) Semantics for use of assertion-predicates, substitution of actual parameters for formal parameters, is defined
in Z.9.3.5, Predicate Invocation.

Example

AADL source code for Assertions used in the definition of behavior of a cardiac pacemaker:� �
<<LRL:x: --Lower Rate Limit

-- there has been a V-pace or a non-refractory V-sense
exists t:BLESS_Types::Time
-- within the previous LRL interval
in (x-max_cci)..x --MaxCCI is the maximum cardiac cycle interval
-- in which a heartbeat was sensed, or caused by pacing
that (vs or vp)@t >>

<<LAST_A_WAS_AS:x: exists t:BLESS_Types::Time in x-max_cci..x that
(as@t and --A-sense at time t

not (exists t2:BLESS_Types::Time in t,,x that --no as or ap since

2If an Assumption has a label, but no parameters, leave a space between to colons so the lexical analyzer emits two colon tokens, not one
double-colon token.

Chapter Z.9. Assertion Z.9.2. Assertion

SAE INTERNATIONAL AS5506/Z BLESS Annex v0.9 Page 95 of 159

(as@t2 or ap@t2))) >>
<<ATR_DURATION:d dur_met: --wait to be sure a-tachy continues

ATR_DETECT(d) and --detection met at time d
(dur > (numberof t:BLESS_Types::Time in d..dur_met that (vs@t or sp@t)))
and (all t2:BLESS_Types::Time in d..dur_met are not ATR_END(t2)) >>� �

Z.9.2.3 Assertion-Function

(1) An assertion-function abstracts a value, usually numeric. Labeled assertion-functions may be used in
assertion-expressions.

Grammar
assertion_function ::=

[label_identifier : [formal_assertion_parameter_list]] :=
(assertion_expression | conditional_assertion_function)

(2) Semantics for use of assertion-functions, substitution of actual parameters for formal parameters, is defined
in Z.9.4.6, Assertion Function Invocation.

Example

An assertion-function defining a moving average, neglecting bad measurements:� �
<<SPO2_AVERAGE: :=

--the sum of good SpO2 measurements
(sum i:integer in -SpO2MovingAvgWindowSamples..-1 of

(SensorConnectedˆ(i) and not MotionArtifactˆ(i)??SpO2ˆ(i):0))
/ --divided by the number of good SpO2 measurements
(numberof i:integer in -SpO2MovingAvgWindowSamples..-1

that (SensorConnectedˆ(i) and not MotionArtifactˆ(i)))>>� �
An assertion-function that determines the maximum cardiac cycle interval during atrial tachycardia response
fall back:� �
<<FallBack_MaxCCI:dur_met x:= (x-dur_met)*((lrl-url)/fb_time)>>� �
Z.9.2.4 Assertion-Enumeration

(1) An assertion-enumeration associates an assertion with elements (identifiers) of enumeration types. Assertion-
enumerations are usually used as a data port property having enumeration type to define what is true about
the system for different elements.

(2) An assertion-enumeration has one parameter for the enumeration value sent or received by an event data
port

Grammar

Chapter Z.9. Assertion Z.9.2. Assertion

SAE INTERNATIONAL AS5506/Z BLESS Annex v0.9 Page 96 of 159

assertion_enumeration ::=
asserion_enumeration_label_identifier : parameter_identifier +=>

enumeration_pair { , enumeration_pair }*
enumeration_pair ::= enumeration_literal_identifier -> predicate

(3) Semantics for use of assertion-enumerations, selection of enumeration pair matching given enumeration
value, is defined in Z.9.4.7, Assertion Enumeration Invocation.

Example� �
<<ALARM_TYPE: x +=> --has enumeration value of first element

--when predicate in 2nd element is true
Pump_Overheated->PUMP_OVERHEATED,
Defective_Battery->DEFECTIVE_BATTERY,
Low_Battery->LOW_BATTERY,
POST_Failure->POST_FAIL,
RAM_Failure->RAM_FAIL,
ROM_failure->ROM_FAIL,
CPU_Failure->CPU_FAIL,
Thread_Monitor_Failure->THREAD_MONITOR_FAIL,
Air_In_Line->AIR_IN_LINE,
Upstream_Occlusion->UPSTREAM_OCCLUSION,
Downstream_Occlusion->DOWNSTREAM_OCCLUSION,
Empty_Reservoir->EMPTY_RESERVOIR,
Basal_Overinfusion->BASAL_OVERINFUSION,
Bolus_Overinfusion->BOLUS_OVERINFUSION,
Square_Bolus_Overinfusion->SQUARE_OVERINFUSION,
No_Alarm->NO_ALARM >>� �

Z.9.3 Predicate

(1) A predicate is a boolean valued function, when evaluated returns true or false. An assertion claims its pred-
icate is true. The meaning of the logical operators within a predicate have customary meanings. Universal
quantification is defined in Z.9.3.8, and existential quantification is defined in D Z.9.3.9.

Grammar
predicate ::=

universal_quantification |
existential_quantification |
subpredicate

[{ and subpredicate }+
| { or subpredicate }+
| { xor subpredicate }+
| implies subpredicate
| iff subpredicate
| -> subpredicate]

Semantics

Chapter Z.9. Assertion Z.9.3. Predicate

SAE INTERNATIONAL AS5506/Z BLESS Annex v0.9 Page 97 of 159

(S1) Where i is an interval, and A,B are predicate atoms:

Mi~A and B� ≡ Mi~A� ∧Mi~B� (the meaning of and is conjunction)
Mi~A or B� ≡ Mi~A� ∨Mi~B� (the meaning of or is disjunction)
Mi~A xor B� ≡ Mi~A� ⊕Mi~B� (the meaning of xor is exclusive-disjunction)
Mi~A implies B� ≡ Mi~A�→ Mi~B� (the meaning of implies is implication)
Mi~A iff B� ≡ Mi~A�↔ Mi~B� (the meaning of iff is if-and-only-if)
Mi~A -> B� ≡ Mi~A�→ Mi~B� (the meaning of -> is implication)

Example� �
<<(goodSamp[ub mod PulseOx_Properties::Max_Window_Samples] iff

(SensorConnectedˆ0 and not MotionArtifactˆ0)) and GS()>>� �
Z.9.3.1 Subpredicate

(1) The meaning of true, false, and not within a predicate have customary meanings. Both parenthesized
predicate and name may be followed by a time expression. Being able to express when a predicate will
be true makes this a temporal logic able to express useful properties of embedded systems. Predicate
invocation is defined in D Z.9.3.5.

(2) The reserved word def defines a “logic variable” that represents an unknown, or changing value.

Grammar
subpredicate ::=

[not]
(true | false | stop
| predicate_relation
| timed_predicate
| event_expression
| def logic_variable_identifier)

Semantics

(S2) Where i is an interval, and A is the rest of a subpredicate:

Mi~ not A� ≡ ¬Mi~A� (the meaning of not is negation)
M~ def D� ≡ ∃D (the meaning of def is definition)
M~ stop � ≡ stop?
(the meaning of stop is arrival of event at pre-declared stop port implicit for all AADL components)

Z.9.3.2 Timed Predicate

(1) In a timed predicate, the time when the predicate holds may be specified. The ’ means the predicate will
be true one clock cycle (or thread period) hence; the @ means the predicate is true when the subexpression,
in seconds, is the current time; and the ˆ means the predicate is true an integer number of clock ticks from

Chapter Z.9. Assertion Z.9.3. Predicate

SAE INTERNATIONAL AS5506/Z BLESS Annex v0.9 Page 98 of 159

now. Grammatically, time expression (Z.9.3.3) and period-shift (D Z.9.3.4) are time-free (e.g. no ’ @ or ˆ
within). Grammar and meaning of a name is defined in Z.7.3 Name.

Grammar
timed_predicate ::=

(name | parenthesized_predicate | predicate_invocation)
[’ | @ time_expression | ˆ integer_expression]

Legality Rules

(L1) When using @ , the subexpression must have a time type such as, Timing_Properties::Time.

(L2) When using ˆ , the value must have integer type.

Semantics

(S3) Where P is a name or a parenthesized predicate, t is a time, d is the duration of a thread’s period, and k is a
period-shift:

M~ P@t � ≡ Mt~ P � (the meaning of P@t is the meaning of P at time t)
Mt~ Pˆk � ≡ Mt+dk~ P �
(the meaning of Pˆk at time t, is the meaning of P , k period durations hence, or earlier if k < 0)
Mt~ P’ � ≡ Mt~ Pˆ1 � ≡ Mt+d~P� (the meaning of P’ at time t, is the meaning of P a period duration hence)

Example� �
<<VS:x: --ventricular sense

sv@x --sensing ventricle enabled
and v@x --v-signal
and not tnv@x --not noisy
and VRP_EXPIRED(x) >> --not ventricular refractory period

<<HR_TREND: : all s:integer in 1..num_samples
are HeartRateTrend[s]=(MotionArtifactˆ(-s)

or not SensorConnectedˆ(-s)??0:HeartRateˆ(-s))>>� �
Z.9.3.3 Time-Expression

(1) Both timed predicate (Z.9.3.2 Timed Predicate) and timed expression (Z.9.4.1 Timed Expression) require a
time-expression when using @ to define when a predicate holds. A time-expression must have type time ,
and must not use @.

Grammar
time_expression ::=

time_subexpression
| time_subexpression - time_subexpression
| time_subexpression / time_subexpression
| time_subexpression { + time_subexpression
| time_subexpression { * time_subexpression }+

Chapter Z.9. Assertion Z.9.3. Predicate

SAE INTERNATIONAL AS5506/Z BLESS Annex v0.9 Page 99 of 159

time_subexpression ::= [-]
(time_assertion_value
| (time_expression)
| assertion_function_invocation)

Legality Rule

(L3) Every time expression must have time type.

Semantics

(S4) Where e and f are time values (real),

Mi~e+f� ≡ Mi~e� +Mi~ f � (the meaning of + is addition)
Mi~e*f� ≡ Mi~e� ×Mi~ f � (the meaning of * is multiplication)
Mi~e-f� ≡ Mi~e� −Mi~ f � (the meaning of - is subtraction)
Mi~e/f� ≡ Mi~e� ÷Mi~ f � (the meaning of / is division)
Mi~(e)� ≡ Mi~e� (the meaning of parentheses is its contents)
Mi~-e� ≡ 0.0 −Mi~e� (the meaning of unary minus is complement)

Example� �
<<PACE_ON_MaxCCI:x: --no intrinsic activity, pace at LRL

(vp or vs)@(x-max_cci)
and --and not since
not (exists t:BLESS_Types::Time

in x-max_cci,,x
--with a non-refractory ventricular sense or pace
that (vs or vp)@t) >>� �

Z.9.3.4 Period-Shift

(1) Both timed predicate (Z.9.3.2) and timed expression (Z.9.4.1) require a period-shift when using ˆ to shift its
time frame by number of thread periods (a.k.a. clock cycles).

integer_expression ::=
[-]
(integer_assertion_value
| (integer_expression - integer_expression)
| (integer_expression / integer_expression)
| (integer_expression { + integer_expression }+)
| (integer_expression { * integer_expression }+))

Legality Rule

(L4) Every period shift must have integer type.

Semantics

(S5) Where e and f are integers,

Chapter Z.9. Assertion Z.9.3. Predicate

SAE INTERNATIONAL AS5506/Z BLESS Annex v0.9 Page 100 of 159

Mi~(e+f)� ≡ Mi~e� +Mi~ f � (the meaning of + is addition)
Mi~(e*f)� ≡ Mi~e� ×Mi~ f � (the meaning of * is multiplication)
Mi~(e-f)� ≡ Mi~e� −Mi~ f � (the meaning of - is subtraction)
Mi~(e/f)� ≡ Mi~e� /Mi~ f � (the meaning of / is division, neglecting remainder)
Mi~-e� ≡ 0 −Mi~e� (the meaning of unary minus is complement)

Example

Examples of period shift from a pulse oximeter smart alarm:� �
<<GOOD: :goodCount=(numberof k:integer in lb..ub-1

that (SensorConnectedˆ(k-ub) and not MotionArtifactˆ(k-ub)))>>
<<CTR: :(all k:integer in lb..ub-1

are spo2_hist[k mod PulseOx_Properties::Max_Window_Samples] = C(k-(ub-1)))
and (totalSpO2=(sum k:integer in lb..ub-1 of C(k-(ub-1))))
and (goodCount=(numberof k:integer in lb..ub-1

that (SensorConnectedˆ(k-(ub-1)) and not MotionArtifactˆ(k-(ub-1)))))
and (all k:integer in lb..ub-1

are goodSamp[k mod PulseOx_Properties::Max_Window_Samples] iff
(SensorConnectedˆ(k-(ub-1)) and not MotionArtifactˆ(k-(ub-1))))>>;� �

Z.9.3.5 Predicate Invocation

(1) Predicate invocation allows labeled Assertions to be used by other Assertions.

(2) Predicates of the form <<B:f:P>> may be invoked as B(a) , where B is the label, f are formal
parameters, P is a predicate, and a are actual parameters. Predicate invocations with single parameter
may omit the formal parameter identifier.

Grammar
predicate_invocation ::=

assertion_identifier ([assertion_expression |
actual_assertion_parameter_list])

actual_assertion_parameter_list ::=
actual_assertion_parameter

{ , actual_assertion_parameter }*
actual_assertion_parameter ::=

formal_parameter_identifier :
actual_parameter_assertion_expression

Semantics

(S6) Where B is an assertion label, f1 f2 . . . fn are formal parameters, and P is a predicate that uses f1 f2 . . . fn,
and

�B : f1 f2 . . . fn : P� (there is assertion B with predicate P & formal parameters f)

then the meaning of predicate invocation is

Chapter Z.9. Assertion Z.9.3. Predicate

SAE INTERNATIONAL AS5506/Z BLESS Annex v0.9 Page 101 of 159

Mi~B(f1:a1, f2:a2, ... fn:an)� ≡ Mi~B |
f1
a1 |

f2
a2 · · · |

fn
an�

(the meaning of a predicate invocation is the meaning of the predicate of the assertion with the same label
having actual parameters substituted for formal parameters)

Naming Rule

(N1) The identifier of a predicate invocation must be the label of a visible or imported assertion.

Example

Examples of predicate invocation from a cardiac pacemaker:� �
<<VP(now) and URL(now)>>
<<ATR_DURATION(d:detect_time, dur_met:now)>>� �
Z.9.3.6 Predicate Relations

(1) Predicate relations have conventional meanings. The in operators tests membership of a range.

predicate_relation ::=
assertion_subexpression relation_symbol

assertion_subexpression
| assertion_subexpression in assertion_range
| shared_integer_name += assertion_subexpression

relation_symbol ::= = | < | > | <= | >= | != | <>

(2) The range is defined with ordinary subexpressions (Z.7.5). Ranges may be open or closed on either or both
ends.
assertion_range ::=

assertion_subexpression range_symbol assertion_subexpression

range_symbol ::= .. | ,. | ., | ,,

Semantics

(S7) Where c, d, l, and u are predicate expressions,

Mi~c=d� ≡ Mi~c� = Mi~d� (the meaning of = is equality)
Mi~c<>d� ≡ Mi~c!=d� ≡ Mi~c� , Mi~d� (the meaning of <> and != is inequality)3

Mi~c<d� ≡ Mi~c� < Mi~d� (the meaning of < is less than)
Mi~c>d� ≡ Mi~c� > Mi~d� (the meaning of > is greater than)
Mi~c<=d� ≡ Mi~c� ≤ Mi~d� (the meaning of <= is at most)
Mi~c>=d� ≡ Mi~c� ≥ Mi~d� (the meaning of >= is at least)
Mi~c in l..u� ≡ Mi~c� ≥ Mi~l� ∧Mi~c� ≤ Mi~u� (the meaning of .. is closed interval)
Mi~c in l,.u� ≡ Mi~c� > Mi~l� ∧Mi~c� ≤ Mi~u� (the meaning of ,. is open-left interval)
Mi~c in l.,u� ≡ Mi~c� ≥ Mi~l� ∧Mi~c� < Mi~u� (the meaning of ., is open-right interval)
Mi~c in l,,u� ≡ Mi~c� > Mi~l� ∧Mi~c� > Mi~u� (the meaning of ,, is open interval)

3Reconciliation: inequality

Chapter Z.9. Assertion Z.9.3. Predicate

SAE INTERNATIONAL AS5506/Z BLESS Annex v0.9 Page 102 of 159

(S8) Where v is an identifier of a shared integer variable, and e is an integer-valued expression,

Mi~v += e� ≡ Mend(i)~v� = Mstart(i)~v� +Mstart(i)~e� (the meaning of += is add to total 4)

Z.9.3.7 Parenthesized Predicate

(1) Parentheses disambiguate precedence.

parenthesized_predicate ::= (predicate)

Semantics

(S9) Where P is a predicate,

Mi~(P)� ≡ Mi~P� (the meaning of parenthesis is its contents)

Z.9.3.8 Universal Quantification

(1) Universal quantification claims its predicate is true for all the members of a particular set. Logic variables must
have types. Bounding the domain of quantification to a range, or when some predicate is true, defines the set
of values that variables may take.5 Quantified variables of type time are particularly useful for declaratively
expression cyber-physical systems (CPS). A particular combination of events either did or did not occur in a
particular interval of time, or what is true about system state during a particular interval of time.

universal_quantification ::=
all logic_variables logic_variable_domain
are predicate

logic_variables ::=
logic_variable_identifier { , logic_variable_identifier }*
: type

logic_variable_domain ::= in
(assertion_expression range_symbol assertion_expression
| predicate)

Semantics

(S10) Where v is a logic variable, T is an assertion-type, R is a range, and P(v) is a predicate that uses v,

Mi~all v:T in R are P(v)� ≡ ∀ v ∈ Mi~R� ⊆ Mi~T� | Mi~P(v)�
(for all v in R, a subset of T, P(v) is true)

4The definition of a single += is straight forward: at the end of the interval, the target will be the target value at the beginning of the
interval, plus an expression also valued at the beginning of the interval. Defining concurrent += to the same target, in the same interval, is
just like solitary +=, using the sum of all concurrent expressions. Concurrent += predicate defines concurrent fetch-add action. Fetch-add is
used to access shared data structures without locks, allowing unlimited speed-up. See U.S Pat. No. 5,867,649 DANCE-Multitude Concurrent
Computation

5Bounding quantification is highly recommended.

Chapter Z.9. Assertion Z.9.3. Predicate

SAE INTERNATIONAL AS5506/Z BLESS Annex v0.9 Page 103 of 159

Example� �
<<MOTION_ARTIFACT_ALARM: :all j:integer

in 0..PulseOx_Properties::Motion_Artifact_Sample_Limit
are (MotionArtifactˆ(-j) or not SensorConnectedˆ(-j))>>� �

Z.9.3.9 Existential Quantification

(1) Existential quantification claims its predicate is true for at least one member of a particular set.

Grammar
existential_quantification ::=

exists logic_variables logic_variable_domain
that predicate

Semantics

(S11) Where v is a logic variable, T is as assertion-type, R is a range, and P(v) is a predicate that uses v,

Mi~exists v:T in R that P(v)� ≡ ∃ v ∈ Mi~R� ⊆ Mi~T� | Mi~P(v)�
(there exists v in R, a subset of T, such that P(v) is true)

Example� �
<<RAPID_DECLINE_ALARM: :AdultRapidDeclineAlarmEnabled and

(exists j:integer in 1..NUM_WINDOW_SAMPLES()
that (SpO2 <= (SpO2ˆ(-j) - MaxSpO2Decline)))>>� �

Z.9.3.10 Event

(1) An event occurs when either a port or variable has a (non-null) value, or the state machine is in a particular
state (see 1.17 Clock).

Grammar

event ::= < port_variable_or_state_identifier >
event_expression ::= [not] event

| event_subexpression (and event_subexpression)+
| event_subexpression (or event_subexpression)+
| event - event

event_subexpression ::=
[always | never] (event_expression) | event

Semantics

(S12) Where p is a port identifier <p> ≡ p̂ ≡ Mnow~p , ⊥�.
Where v is a variable identifier <v> ≡ v̂ ≡ Mnow~v , ⊥�.

Chapter Z.9. Assertion Z.9.3. Predicate

SAE INTERNATIONAL AS5506/Z BLESS Annex v0.9 Page 104 of 159

Where s is a state identifier <s> ≡ ŝ ≡ Mnow~S tate(s)� where S tate(s) means the state machine is currently
in state s.

(S13) Where <x> and <y> are events, <x> - <y> ≡ x̂ −̂ ŷ.

(S14) Where ee is an event expression, never(ee) ≡ee= 0̂, and always(ee) ≡ee= ˆ1S VP.

(S15) Logical operators not, and, or are complement, conjunction, and disjunction, respectively. Parentheses
group.

Z.9.4 Assertion-Expression

(1) Other useful quantifiers add, multiply, or count the elements of sets. There is no operator precedence so
parentheses must be used to avoid ambiguity. Numeric operators have their usual meanings.

(2) Assertion-expressions differ from expression usually found in programming languages which are intended
to be evaluated during execution. Rather, assertion expressions define values derived from over values,
usually numeric. Such predicate expressions usually appear within predicates that contain relations between
values. Predicate expressions may also used within assertion-functions (Z.9.2.3) to define Assertions that
return values.

(3) Numeric quantifiers sum, product, and number-of have an optional logic variable domain, but include one
whenever possible. Bounding quantification prevents oddities that can occur with infinite domains. In mathe-
matics, sums of an infinite number of ever smaller terms are quite common. But for reasoning about program
behavior, stick to bounded quantifications.

Grammar
assertion_expression ::=

sum logic_variables [logic_variable_domain]
of assertion_expression

| product logic_variables [logic_variable_domain]
of assertion_expression

| numberof logic_variables [logic_variable_domain]
that subpredicate

| assertion_subexpression
[{ + assertion_subexpression }+
| { * assertion_subexpression }+
| - assertion_subexpression
| / assertion_subexpression
| ** assertion_subexpression
| mod assertion_subexpression
| rem assertion_subexpression]

Semantics

(S1) Where v is a logic variable, T is a type, R is a range, P(v) is a predicate that uses v, E(v) is a predicate
expression that uses v, and e, f are predicate subexpressions,

Chapter Z.9. Assertion Z.9.4. Assertion-Expression

SAE INTERNATIONAL AS5506/Z BLESS Annex v0.9 Page 105 of 159

Mi~sum v:T in R of E(v)� ≡
∑

v∈RMi~E(v)�
(sum the value E(v) for each v in the range R)
Mi~product v:T in R of E(v)� ≡

∏
v∈RMi~E(v)�

(multiply the value E(v) for each v in the range R)
Mi~numberof v:T in R that P(v)� ≡ ‖{v ∈ Mi~R� |Mi~P(v)�}‖
(cardinality of the set of v in R for which P(v) is true)
Mi~e+f� ≡ Mi~e� +Mi~ f � (the meaning of + is addition)
Mi~e*f� ≡ Mi~e� ×Mi~ f � (the meaning of * is multiplication)
Mi~e-f� ≡ Mi~e� −Mi~ f � (the meaning of - is subtraction)
Mi~e/f� ≡ Mi~e� ÷Mi~ f � (the meaning of / is division)
Mi~e**f� ≡ Mi~e�Mi~ f � (the meaning of ** is exponentiation)
Mi~e mod f� ≡ Mi~e� mod Mi~ f � (the meaning of mod is modulus)
Mi~e rem f� ≡ Mi~e� remMi~ f � (the meaning of rem is remainder)

Legality Rule

(L1) The ranges for sum, product, and numberof predicate expressions must be discrete and finite.

(4) Predicate subexpressions allow optional negation of a timed expression. Negation has the usual mean-
ing.

Grammar
assertion_subexpression ::=

[- | abs] timed_expression
| assertion_type_conversion

assertion_type_conversion ::=
(natural | integer | rational | real | complex | time)
parenthesized_assertion_expression

Semantics

(S2) Where S is a predicate expression,

Mi~-S� ≡ 0 −Mi~S � (the meaning of - is negation)
Mi~abs S� ≡ Mi~(if S>=0 then S else -S)� (the meaning of abs is absolute value)6

Example� �
<<SPO2_AVERAGE: :=

--the sum of good SpO2 measurements
(sum i:integer in -SpO2MovingAvgWindowSamples..-1 of

(SensorConnectedˆ(i) and not MotionArtifactˆ(i)??SpO2ˆ(i):0))
/ --divided by the number of good SpO2 measurements
(numberof i:integer in -SpO2MovingAvgWindowSamples..-1

that (SensorConnectedˆ(i) and not MotionArtifactˆ(i)))>>� �
6Reconciliation: absolute value

Chapter Z.9. Assertion Z.9.4. Assertion-Expression

SAE INTERNATIONAL AS5506/Z BLESS Annex v0.9 Page 106 of 159

Z.9.4.1 Timed Expression

(1) In a timed expression, the time when the expression is evaluated may be specified. The ’ means the value
of the expression one clock cycle (or thread period) hence; the @ means the value of the expression when
the subexpression (to the right of the @), in seconds, is the current time; and the ˆ means the value of the
expression an integer number of clock ticks from now. Grammatically, time-expression and period-shift are
time-free (no ’ @ or ˆ within).

Grammar
timed_expression ::=

(assertion_value
| parenthesized_assertion_expression
| predicate_incocation)

[’
| ˆ integer_expression
| @ time_expression]

Legality Rules

(L2) When using @, the subexpression must have a time type such as, Timing_Properties::Time.

(L3) When using ˆ, the value must have integer type.

Semantics

(S3) Where E is a value, a parenthesized predicate expression, or a conditional predicate expression, t is a time,
d is the duration of a thread’s period, and k is an integer:

M~E@t� ≡ Mt~E� (the meaning of E@t is the meaning of E at time t)
Mt~Eˆk� ≡ Mt+dk~E� (the meaning of Eˆk at time t, is the meaning of E, k period durations hence, or earlier if
k < 0)
Mt~E’� ≡ Mt~Eˆ1� ≡ Mt+d~E� (the meaning of E’ at time t, is the meaning of E a period duration hence)

Example� �
<<heart_rate[i]=(MotionArtifactˆ(1-i) or not SensorConnectedˆ(1-i)

??0:HeartRateˆ(1-i))>>� �
Z.9.4.2 Parenthesized Assertion Expression

(1) Parentheses around assertion expressions determine operator precedence. Both conditional assertion ex-
pressions and record term have inherent parentheses.

Grammar
parenthesized_assertion_expression ::=

(assertion_expression)
| conditional_assertion_expression
| record_term

Chapter Z.9. Assertion Z.9.4. Assertion-Expression

SAE INTERNATIONAL AS5506/Z BLESS Annex v0.9 Page 107 of 159

Z.9.4.3 Assertion-Value

(1) An assertion-value is atomic, so cannot be further subdivided into simpler expressions. The value of tops
is the time of previous suspension of the thread which contains it; tops is used commonly in expressions
of timeouts. The value of assertion function invocation is given in Z.9.3.5. Property values according to
AS5506B §11 Properties. Port values according to AS5506B §8.3 Ports.

Grammar
assertion_value ::=

now | tops | timeout
| value_constant
| variable_name
| assertion_function_invocation
| port_value

Z.9.4.4 Conditional Assertion Expression

(1) A conditional assertion expression determines the value of a predicate expression by evaluating a boolean
expression or relation, then choosing between alternative expressions, having the first value if true or the
second value if false.

Grammar
conditional_assertion_expression ::=
(predicate ?? assertion_expression : assertion_expression)

Semantics

(S4) Where t and f are expressions and B is a boolean-valued expression or relation:

Mi~(B??t:f)� ≡
Mi~B�→ Mi~t�
¬Mi~B�→ Mi~f�

(choose first value if true; second value if false)

Example� �
<<(all i:integer in 1 ..num_samples

are spo2[i]’=(if MotionArtifactˆ(1-i) or not SensorConnectedˆ(1-i)
then 0 else SpO2ˆ(1-i)))

and (num_samples’=PulseOx_Properties::Num_Trending_Samples)>>� �
Z.9.4.5 Conditional Assertion Function

(1) A conditional assertion function is much like a conditional assertion expression (Z.9.4.4), but allows an
arbitrary number of choices, each of which is controlled by a predicate. A conditional assertion function is
only permitted as a assertion-function value (Z.9.2.3).

Chapter Z.9. Assertion Z.9.4. Assertion-Expression

SAE INTERNATIONAL AS5506/Z BLESS Annex v0.9 Page 108 of 159

(2) Conditional assertion-function was added to specify the flow rate of a patient-controlled analgesia (PCA)
pump. Rather than a smooth function, the flow rate must be different depending on system state (see
example). PUMP RATE is the BLESS::Assertion property of a port of the thread deciding infusion rate. Each
of the parenthesized predicates embodies complex conditions that must be true for each of the possible
infusion rates. When a value is output from the port, a proof obligation is generated to ensure that the
corresponding property holds.

Grammar
conditional_assertion_function ::=

(condition_value_pair { , condition_value_pair }*)
condition_value_pair ::=

parenthesized_predicate -> assertion_expression

Semantics

(S5) Where C1, C2, and C2 are predicates and E1, E2, and E3 are assertion-expressions:

Mi~(C1)->E1,(C2)->E2,(C3)->E3� ≡

Mi~C1�→ Mi~E1�
Mi~C2�→ Mi~E2�
Mi~C3�→ Mi~E3�

¬Mi~C1� ∧ ¬Mi~C2� ∧ ¬Mi~C3�→ ⊥
(choose the value corresponding to the true condition, or null in no conditions are true)

Example

Conditional assertion-functions should be used sparingly. The pump-rate example below induced conditional
assertion-function’s creation to define infusion rate in different conditions.� �
<<PUMP_RATE: :=

(HALT()) -> 0, --no flow
(KVO_RATE()) -> PCA_Properties::KVO_Rate, --KVO rate
(PB_RATE()) -> PCA_Properties::Patient_Button_Rate, --maximum infusion
(CCB_RATE()) -> Square_Bolus_Rate, --square bolus rate
(PRIME_RATE()) -> PCA_Properties::Prime_Rate, --pump priming
(BASAL_RATE()) -> Basal_Rate --basal rate, from data port

>>� �
Z.9.4.6 Assertion-Function Invocation

Assertion-functions which are declared in the form <<C:f:=E>> and may be invoked like functions as a
predicate value C(a) , where

• C is the label,

• f are formal parameters,

• E is an assertion-expression, and

• a are actual parameters.

Chapter Z.9. Assertion Z.9.4. Assertion-Expression

SAE INTERNATIONAL AS5506/Z BLESS Annex v0.9 Page 109 of 159

Grammar
assertion_function_invocation ::=

assertion_function_identifier
([assertion_expression |
actual_assertion_parameter { , actual_assertion_parameter }*])

actual_assertion_parameter ::=
formal_identifier : actual_assertion_expression

Semantics

(S6) Where C is an assertion-function label, f1 f2 . . . fn are formal parameters, and E is a predicate expression
that uses f1 f2 . . . fn, and

�C : f1 f2 . . . fn := E�
(there is assertion-function C with predicate expression E and formal parameters f)

(S7) The meaning of assertion-function invocation is

Mi~C(a1 a2 ... an)� ≡ Mi~E |
f1
a1 |

f2
a2 · · · |

fn
an�

(the meaning of an assertion function invocation is the meaning of the expression of the assertion-function
with the same label having actual parameters substituted for formal parameters)

Example� �
<<SUPPL_O2_ALARM: :SupplOxyAlarmEnabledˆ0 and

(SPO2_AVERAGE())ˆ0 < (SpO2LowerLimitˆ0+SpO2LevelAdjˆ0)>>� �
Z.9.4.7 Assertion-Enumeration Invocation

Assertion-enumerations which are declared in the form <<C:x+=>R>> and may be invoked like functions
as a predicate value C(a) , where

• C is the label of the assertion-enumeration,

• a is an enumeration-element identifier, and

• R is a set of enumeration pairs (label -> predicate).

assertion_enumeration_invocation ::=
+=> assertion_enumeration_label_identifier
(actual_assertion_parameter)

Semantics

(S8) Where

C is an assertion-enumeration label,

L is a set of enumeration labels {l1, l2, . . . , ln},

a is the formal parameter, an enumeration label a ∈ L,

Chapter Z.9. Assertion Z.9.4. Assertion-Expression

SAE INTERNATIONAL AS5506/Z BLESS Annex v0.9 Page 110 of 159

P is a set of predicates {p1, p2, . . . , pn}, and

R is a set of enumeration pairs, {l1 → p1, l2 → p2, . . . , ln → pn} defining the onto relation7 between
enumeration labels and their meaning, R(j) = q ≡ j→ q ∈ R

and

<<C:x+=>R>> (there is assertion-enumeration C with enumeration pairs R and ignored parameter x)

(S9) The meaning of assertion-enumeration invocation is

Mi~C(a)� ≡ Mi~R(a)�
(the meaning of an assertion-enumeration invocation is the predicate paired with given label a)

Example

(1) Enumeration types should be used sparingly. Assertion-enumerations were created to express the meaning
of event-data with enumeration type. Ports having enumeration types may only have enumeration literals
for out parameters. The following example expressed the meaning of ‘On’ and ‘Off’ in section A.5.1.3 of the
isolette example in FAA’s Requirement Engineering Management Handbook:� �
--A.5.1.3 Manage Heat Source Function
<<HEAT_CONTROL:x+=>

On -> REQMHS2() or --below desired range
(REQMHS4() and (heat_controlˆ-1=On)),

Off -> REQMHS1() or --initialization
REQMHS3() or --above desired range
REQMHS5() or --failed
(REQMHS4() and (heat_controlˆ-1=Off)) >>� �

Used to define the meaning of the value of port heat_control :� �
heat_control : out data port Iso_Variables::on_off

{BLESS::Assertion => "<<+=>HEAT_CONTROL(x)>>";};� �
When an enumeration value is sent out port in state-machine action:� �

mhsBelow: --REQ-MHS-2 temp below desired range
check_temp -[current_temperature? <= lower_desired_temperature?]-> run
{ <<REQMHS2() and not REQMHS1()>>
heat_control!(On) --temp below desired range
; <<heat_control=On>>
heat_previous_period’ := On

<<heat_previous_period’ = heat_control>>
}; --end of mhsBelow� �

During transformation from proof outline to complete proof, port output of ‘On’ and its precondition� �
<<REQMHS2() and not REQMHS1()>>

heat_control!(On) --temp below desired range� �
becomes a verification condition, that what’s claimed for ‘On’ holds

7Every label has exactly one predicate defining its meaning.

Chapter Z.9. Assertion Z.9.4. Assertion-Expression

SAE INTERNATIONAL AS5506/Z BLESS Annex v0.9 Page 111 of 159

� �
<<REQMHS2() and not REQMHS1()>>

->
<<REQMHS2() or (REQMHS4() and (heat_controlˆ-1=On))>>� �

(2) If it’s just two labels (off/on) use a simple predicate instead. Save the hassle of putting meaning to enumera-
tion labels for when it’s unavoidable:� �
--regulator mode Figure A-4. Regulate Temperature Mode Transition Diagram
<<REGULATOR_MODE:x+=>

Init -> INI(),
NORMAL -> REGULATOR_OK() and RUN(),
FAILED -> not REGULATOR_OK() and RUN() >>� �

Chapter Z.9. Assertion Z.9.4. Assertion-Expression

Chapter Z.10
Subprogram

(1) Subprogram behavior is defined using the Action annex sublanguage. Only subprogram components have
Action annexes.

Grammar
subprogram_annex_subclause ::=

annex Action {** subprogram_behavior **} ;

Z.10.1 Subprogram Behavior

(1) An Action annex consists of a behavior action block that may be preceded by Assertions visible in the
scope of the subprogram, a precondition, and a postcondition. A precondition that must be true of the sub-
program parameters is preceded by pre. A postcondition that will be true after execution of the subprogram
is preceded by post.

Grammar
subprogram_behavior ::=

[assert { assertion }+]
[pre assertion]
[post assertion]
[invariant assertion]
behavior_action_block 1

{k

{k

�P�

�Q�

start(i)
PPPq

end(i)
���

E �A�{i

Figure Z.10.1: Subprogram Satisfy-
ing Lattice

(2) In most programming languages, a subprogram is comprised from imperative
commands that assign values of expressions to variables or control the flow
of execution with branches and loops. For BAv2 subprograms, the temporal

1BLESS Differs from BA: subprograms have no transitions

112

SAE INTERNATIONAL AS5506/Z BLESS Annex v0.9 Page 113 of 159

logic formula comprising the main body of the subprogram is satisfied by lat-
tices of states (§1.9). Execution of a BAv2 subprogram constructs a satisfying
state lattice. Typically many different lattices satisfy the same temporal logic
formula, all of which will have identical bindings of values to variables in their
start and end states.

(3) Figure Z.10.1 depicts a lattice that satisfies a subprogram having precondition
P, post condition Q, by constructing an interval i, satisfying E, its existential
lattice quantification. Although depicted as a single arc from the interval’s
start node to its end node, satisfying lattices will have many intermediate
nodes and arcs.

(4) Subprograms may also assert invariants that must be true in every state.
Figure Z.10.1 depicts an invariant, A that must hold in every state in i. Both
E and A are logic formulas, of different logics. The difference is that e is an
interval temporal logic satisfied by the combined structure of states (nodes) and transitions (arcs), while A is
a first-order predicate applied to each of the states individually.

(5) Within the behavior annex subclause the value of a data component is returned by naming the data sub-
component, the requires data access, or the provides data access feature. Multiple references to this name
represent multiple reads that may return different values, if the data component is shared and a write has
been performed concurrently between the two reads. Concurrent writes may be prevented by a value of the
Concurrency Control Protocol property that ensures mutual exclusion over an execution sequence
with multiple reads.2

(6) A transition action can assign a return value to an outgoing parameter of the containing subprogram type
by naming the parameter on the left-hand side of the assignment, i.e., par :=v. A transition action can
assign a value to an incoming parameter of a subprogram call by specifying the value v in place of the formal
parameter.3

Legality Rule

(L1) Assertions of subprograms must not have temporal operators @, ˆ, or ’.4

Semantics

(S1) Where A, P, and Q are predicates, and E is existential lattice quantification:

Mi~assert �A� pre �P� post �Q� E�
≡ Mstart(i)~P� ∧Mend(i)~Q� ∧Mi~E� ∧Mi~A�
(the meaning of subprogram behavior is: P is true in the stating state of i, Q is true in the ending state of i,
A is true throughout i, and i satisfies E)

(S2) Equivalently, assert <<A>> pre <<P>> post <<Q>> E has the behavior of an automata transition T (s, true, d, true)[E]
from initial state s in which assertion�P� holds to final state d in which assertion�Q� holds while
performing action E.5

2BA D.5(10)
3BA D.5(17)
4Without temporal operators, assertions are first-order predicates.
5JP

Chapter Z.10. Subprogram Z.10.1. Subprogram Behavior

SAE INTERNATIONAL AS5506/Z BLESS Annex v0.9 Page 114 of 159

Example� �
subprogram minimum3
features

a: in parameter BAv2_Types::Real;
b: in parameter BAv2_Types::Real;
c: in parameter BAv2_Types::Real;
result: out parameter BAv2_Types::Real;

annex Action
{**
assert <<MIN3:a b c:=(a<MIN(a:b,b:c) ?? a : MIN(a:b,b:c))>>
pre <<a>0 and b>0 and c>0>>
post <<result=MIN3(a:a,b:b,c:c)>>

{
<<true>>

result := (c<(a < b ?? a : b) ?? c : (a < b ?? a : b))
<<result=MIN3(a:a,b:b,c:c)>>
}

**};
end minimum3;� �
Z.10.2 Subprogram Basic Actions

(1) Within a Action annex, the only basic actions are skip, assignment, simultaneous assignment, and ex-
ception throwing.6 For threads basic action includes other actions not performed by subprograms
(§Z.6.4).

Grammar
basic_action ::=

skip | assignment | simultaneous_assignment | when_throw
| subprogram_invocation

Z.10.3 Value for Subprograms

(1) An value is indivisible and may be a variable name, a function call, a reserved word, a property constant or
a literal.7 Literals have the same representation as the core language.8

Grammar
value ::=

variable_name | value_constant | function_call
| incoming_subprogram_parameter_identifier | null

6BLESS Differs from BA: subprogram basic actions
7BLESS Differs from BA: subprogram values
8AS5506B §15.4 Numeric Literals

Chapter Z.10. Subprogram Z.10.2. Subprogram Basic Actions

Chapter 1
Appendix: Mathematics

*

(1) To prove correctness, a programming language must be mathematically defined. Therefore, the foundational
mathematics must be derived from First Principles.

The foundational mathematics was deliberately selected to be as simple as possible, using only a few fun-
damental concepts from which all else flows. The following sections tersely declare these fundamental
concepts, and is not meant as a textbook or tutorial. Many pieces of standard mathematics, like numbers
and arithmetic are just assumed.1

Later, computation will be defines as satisfaction of interval-temporal logic formulas with lattices of states–not
as a sequence of imperative commands. A lattice is a relation with some special properties. Thinking about
programs as logic formulas, instead of traditional, imperative, sequential control flow, takes some getting
used to.

Still, this document attempts to be self-contained, explicitly built on simple math defined herein, starting with
sets.

Appendix 1.1 Sets

(1) A set is a collection of elements. Finite sets may be specified by enumerating their elements between curly
braces. For example, {true, f alse} denotes the set consisting of the Boolean constants true and false. When
enumerating elements of a set, “. . . ” is used to denote repetition. For example, {1, . . . , n} denotes the set of
natural numbers from 1 to n where the upper bound, n, is a natural number that is not further specified.

(2) More generally, sets are specified by referring to some property of their elements. {x | P} denotes the set of
all elements x that satisfy the property P. The bar, | , can be read as “such that”. For example, {x | x is an

1as defined by CRC Concise Encyclopedia of Mathematics, Eric W Weisstein, editor, second edition, Chapman & Hall/CRC, 2003.

115

SAE INTERNATIONAL AS5506/Z BLESS Annex v0.9 Page 116 of 159

integer and x is divisible by 2} denotes the infinite set of all even integers.

(3) For membership, a ∈ A denotes that a is an element of the set A, and b < A to denote that b is not an element
of the set A.

(4) Some sets have customary symbols:

∅ denotes the empty set;

N0 denotes the set of all natural numbers, including 0;

Z denotes the set of all integers;

Q denotes the set of rational numbers;

R denotes the set of real numbers;

C denotes the set of complex numbers.

B denotes the set {true, f alse}.

Fixed-point numbers are rational numbers with fixed divisor.

(5) In a set, one does not distinguish repetitions of elements. Thus {T, F} and {T,T, F} are the same set. Often it
is convenient to refer to a given set when defining a new set. {x ∈ A | P} is an abbreviation for {x | x ∈ A and P}.
Similarly, the order of elements is irrelevant. Two sets A and B are equal, B = A, if-and-only-if they have the
same elements.

(6) Let A and B be sets. Then A ⊆ B denotes that A is a subset of B; A ∩ B denotes the intersection of A and B;
A ∪ B denotes the union of A and B; and, A − B denotes the difference of A and B. The symbol ≡ is used to
define equivalence.

A ⊆ B ≡ a ∈ B for every a ∈ A
A ∩ B ≡ {a | a ∈ A and a ∈ B}
A ∪ B ≡ {a | a ∈ A or a ∈ B}
A − B ≡ {a | a ∈ A and a < B}

(7) Sets A and B are disjoint if they have no element in common, A ∩ B = ∅.

(8) The definitions of intersection and union can be generalized to more than two sets. Let Ak be a set for every
element k of some other set J in

⋂
k∈J ≡ {a | a ∈ Ak for all k ∈ J}

⋃
k∈J ≡ {a | a ∈ Ak for some k ∈ J}

(9) For a finite set A, ‖A‖ denotes the cardinality, or number of elements in A. For a non-empty, finite set B ⊂ Z,
min(B) denotes the minimum of all integers in B.

(10) D is the set of all possible constructed values, including strings, records, and arrays, formally defined in DZ.8
Type.

Appendix 1.2 Tuples

(1) For sets, the repetition of elements and their order is irrelevant. When ordering matters, ordered pairs and
tuples are used. For elements a and b, not necessarily distinct, 〈a, b〉 is an ordered pair or simply pair. Then

Chapter 1. Appendix: Mathematics 1.2. Tuples

SAE INTERNATIONAL AS5506/Z BLESS Annex v0.9 Page 117 of 159

a and b are called components of 〈a, b〉. Two pairs 〈a, b〉 and 〈b, c〉 are equal, 〈a, b〉 = 〈c, d〉 if-and-only-if
a = c and b = d.

(2) More generally, let n be any natural number, n ∈ N0. Then if a1, . . . , an are any n elements, then 〈a1, . . . , an〉

is an n-tuple. The element ak where k ∈ {1, . . . , n} is called the k-th element of 〈a1, . . . , an〉. An n-tuple
〈a1, . . . , an〉 is equal to an m-tuple 〈b1, . . . , bm〉, 〈a1, . . . , an〉 = 〈b1, . . . , bm〉, if-and-only-if m = n and ak = bk for
all k ∈ {1, . . . , n}. Note that 2-tuples are pairs. Additionally, a 0-tuple is written as 〈〉, and a 1-tuple as 〈a〉 for
any element a.

(3) The Cartesian product , A × B of sets A and B consists of all pairs, 〈a, b〉 with a ∈ A and b ∈ B. The n-
fold Cartesian product, A1 × . . . × An of sets A1, . . . , An consists of all n-tuples, 〈a1, . . . , an〉 with ak ∈ Ak for
k ∈ {1, . . . , n}. If all Ak are the same set A, then the n-fold Cartesian product, A × . . . × A is also written
An.

Appendix 1.3 Relations

(1) A binary relation R between sets A and B is a subset of their Cartesian product, A × B, that is, R ⊆ A × B.
If A = B, then R is called a relation on A. For example, {〈a, 1〉, 〈b, 2〉, 〈c, 2〉} is a binary relation between
{a, b, c} and {1, 2}. More generally, for any natural number n, and n-ary relation R between sets A1, . . . , An is
a subset of the n-fold Cartesian product A1 × . . . × An, that is, R ⊆ A1 × . . . × An. Note that 1-ary relations
are called unary relations, 2-ary relations are called binary relations, and 3-ary relations are called ternary
relations.

(2) Consider a binary relation R on a set A. R is called reflexive if 〈a, a〉 ∈ R for every a ∈ A; it is called irreflexive
if 〈a, a〉 < R for every a ∈ A. R is called symmetric if for all a, b ∈ R, whenever 〈a, b〉 ∈ R the also 〈b, a〉 ∈ R; it
is called antisymmetric if for all a, b ∈ A, whenever 〈a, b〉 ∈ R and 〈b, a〉 ∈ R then b = a. R is called transitive
if for all a, b, c ∈ A whenever 〈a, b〉 ∈ R and 〈b, c〉 ∈ R then also 〈a, c〉 ∈ R.

(3) The transitive, reflexive closure, R?, of a binary relation R over a set A, is the smallest, transitive and reflexive,
binary relation on A that contains R as a subset. The transitive, irreflexive closure, R+, of a binary relation R
over a set A, is the smallest, transitive and irreflexive binary relation that contains R as a subset.

R? ≡ R ⊆ R? and for all a, b, c ∈ A |
〈a, b〉 ∈ R? ∧ 〈b, c〉 ∈ R? → 〈a, c〉 ∈ R?

〈a, a〉 ∈ R?

R+ ≡ R ⊆ R+ and for all a, b, c ∈ A |
〈a, b〉 ∈ R+ ∧ 〈b, c〉 ∈ R+ → 〈a, c〉 ∈ R+

〈a, a〉 < R+

(4) The relational composition, R1 ◦ R2 , of relations R1 and R2 on a set A creates a new relation by combining
them:

R1 ◦ R2 ≡ {〈a, c〉 | there exists b ∈ A with 〈a, b〉 ∈ R1 and 〈b, c〉 ∈ R2}

(5) For any natural number n, the n-fold relational composition, Rn, of a relation R on a set A is defined induc-
tively:

R0 ≡ {〈a, a〉 | a ∈ A}

Rn ≡ Rn−1 ◦ R for n > 0.

Chapter 1. Appendix: Mathematics 1.3. Relations

SAE INTERNATIONAL AS5506/Z BLESS Annex v0.9 Page 118 of 159

R? ≡
⋃

n∈N0
Rn

R+ ≡ R? − R0

(6) Membership of pairs in a binary relation is usually written in infix notation; instead of 〈a, b〉 ∈ R, use aRb. Any
binary relation R ⊆ A × B has an inverse R−1 ⊆ B × A such that bR−1a if-and-only-if aRb.

Appendix 1.4 Functions

(1) Let A and B be sets. A function or mapping from A to B is a binary relation f between A and B with the
following special property: for each element a ∈ A there is exactly one element b ∈ B such that a f b. Usually
functions use prefix notation for function application writing f (a) = b instead of a f b. For some functions
postfix notation is used to write a f = b. To indicate that f is a function from A to B write f : A → B. The set
A is called the domain of f and the set B is called the range or co-domain of f .

(2) Consider a function f : A→ B and some set X ⊆ A. The restriction of f to X is denoted by f [X] and defined
as the intersection of f (which is a subset of A × B) with X × B: f [X] ≡ f ∩ (X × B). Functions may have
special properties. A function f : A → B is called one-to-one or injective if f (a1) , f (a2) for any two distinct
elements a1, a2 ∈ A. It is called onto or subjective if for every element b ∈ B there exists an element a ∈ A
with f (a) = b. It is called bijective if it is both injective and subjective.

(3) Consider an n-ary function whose domain is a Cartesian product, f : A1 × . . . × An → B. It is customary
to drop tuple brackets when applying f to a tuple 〈a1, . . . , an〉 ∈ A1 × . . . × An writing f (2, 3) instead of
f (〈2, 3〉).

(4) Consider a binary function whose domain and co-domain coincide, f : A → A. An element a ∈ A is called a
fixed point of f if f (a) = a.

(5) Boolean logic can also be considered to be functions on {true, false}.

conjunction of a and b is a ∧ b;

disjunction is a ∨ b ;

implication is a→ b;

if-and-only-if is a↔ b ;

exclusive disjunction is a ⊕ b;

complement is ¬a.

Table 1.1: Boolean Function Truth Table
a b a ∧ b a ∨ b a→ b a↔ b a ⊕ b ¬a

false false false false true true false true
true false false true false false true false
false true false true true false true true
true true true true true true false false

Chapter 1. Appendix: Mathematics 1.4. Functions

SAE INTERNATIONAL AS5506/Z BLESS Annex v0.9 Page 119 of 159

Appendix 1.5 Sequences

(1) Sequences are ordered sets. In the following, let A be a set. A sequence of elements of A of length
n > 0 is a function f : {1, . . . , n} → A. A sequence is denoted by listing its values in order a1, . . . , an where
a1 = f (1), . . . , an = f (n). Then the k-th element of the sequence a1, . . . , an is ak when k ∈ {1, . . . , n}. A
finite sequence is a sequence of any length n ≥ 0. A sequence of length 0 is called the empty sequence
and denoted ε. A countably-infinite sequence of elements from A is a function ξ : N0 → A. To exhibit the
general form of a countably-infinite sequence ξ is written ξ : a0 a1 a2 . . . when ak = ξ(k) for all k ∈ N0. Then
k is called the index of element ak.

(2) Consider now a set of relations, R = {R1,R2, . . . ,Rn−1}, on a set A. For any finite sequence of elements of A,
a1 . . . an, such that each element is related to the next by a relation in R, a1R1a2, a2R2a3, . . . , an−1Rn−1an

can be written as a finite chain, a1R1a2R2a3 . . .Rn−1an For example, using the relations = and < over Z, a
finite chain may be written a0 < a1 = a2 < a3 < a4. Similarly for infinite sequences and infinite chains.

(3) A permutation of a sequence has the same elements in different order. In the following, let f and g be
sequences of distinct2 elements f : {1, . . . , n} → A and g : {1, . . . ,m} → A. The sequences are permutations
of each other, f � g, when they are the same length and have the same elements f � g ≡ n =

m ∧ { f (1), f (2), . . . , f (n)} = {g(1), g(2), . . . , g(m)}

Appendix 1.6 Strings

(1) A set of symbols is often called an alphabet . A string over an alphabet A is a finite sequence of symbols from
A. For example, 1 + 2 is a string over the alphabet {1, 2,+}. Syntactic objects like AADL annex subclauses
are strings.

(2) The concatenation of two strings s1 and s2 yields the string s1s2 formed by first writing s1 and then s2. A
string t is called a substring of a string s if there exist strings s1 and s2 such that s = s1ts2. Because s1 and
s2 may be empty, every string is a substring of itself.

Appendix 1.7 Partial Orders

(1) A partial order is a pair (A,@) consisting of a set A and a irreflexive, antisymmetric, and transitive relation @
on A. The reflexive partial order is denoted v . If x @ y for some x, y ∈ A, then x is called less than y, or y is
greater than x. Consider an element a ∈ A and a subset X ⊆ A. When a ∈ X and a @ x for all x ∈ X − {a},
the a is called the least element of X. When x @ b for all x ∈ X − {b}, then b is called an upper bound of X.
Upper bounds of X need not be elements of X. Let U be the set of all upper bounds of X. Then a is called
the least upper bound of X if a is the least element of U.

(2) A partial order (A,@) is called complete if A contains a least element, and for every ascending chain a0 @
a1 @ a2 · · · of elements from A, the set {a0, a1, a2, . . .} has a least upper bound.

2may not need restriction on repeated elements; that the sets are the same, repeated elements and all, may be enough; but then they have
equal bags, not sets and that way madness lies

Chapter 1. Appendix: Mathematics 1.5. Sequences

SAE INTERNATIONAL AS5506/Z BLESS Annex v0.9 Page 120 of 159

Appendix 1.8 Graphs

(1) A graph is a pair 〈V, E〉 where V is a finite set of vertices {v1, v2, . . . , vn} and E is a finite set of edges where
each edge is a pair of vertices in V, {〈vm, vl〉, . . . , 〈v j, vk〉}. All graphs considered here are directed in the the
order of vertices within the pair describing the edge is significant. The set of edges forms a relation on the
set of vertices E ⊆ V × V. The transitive, irreflexive closure of E, called E+ is especially important.

Appendix 1.9 Lattices

(1) A graph 〈V, E〉 is a lattice if the transitive, irreflexive closure of E, E+, is an irreflexive partial order @, it has a
least element ` ∈ V, and an upper bound u ∈ V. Executions of BA2015 actions create lattices.

vfv v v v v vf f f f f fvfv v vf f fv v v v v vf f f f f fv v v v v v v v v v v vf f f f f f f f f f f fv v v v v vf f f f f fv v vf f fvfv v v v v v v v v vf f f f f f f f f fvf

l =start(i)��9

u =end(i)XXy

} i
time
flows
down?

Figure 1.1: Generic Lattice

(2) Depictions of lattices place the least element (a.k.a.
“start”) at the top, and the greatest element (a.k.a.
“end”) at the bottom. Directed edges use no arrow-
heads; instead, the edges are presumed to flow from
the higher vertex to the lower vertex.

(3) Because lattices will be used to define intervals of time,
when an unspecified-further lattice needs a name it is
often called i. Interval i = 〈Vi, Ei〉 has a least element
at the top called start(i) ∈ Vi, and an upper bound at
the bottom called end(i) ∈ Vi. Like trees and conven-
tional current, representations are reflected; least is
top (because it’s first) and upper most is bottom (be-
cause it’s last). To define a notion of “before” is why all
that stuff about irreflexive partial orders, least elements
and upper bounds was needed.

(4) Every edge and vertex in the lattice is reachable from
the least element; every edge and vertex in the lattice
can reach the upper bound.3 ∀v ∈ Vi − ` | ` @ v ∧ ∀v ∈
Vi − u | v @ u

(5) If there is a path between v1 and v2, then v1 @ v2, which
means v1 occurs before v2. If there is no path between v1 and v2, v1 a v2 ∧ v2 a v1 → v1 ‖ v2 then v1 and v2
may occur in either order, or concurrently.

3∀ means “for all”

Chapter 1. Appendix: Mathematics 1.8. Graphs

SAE INTERNATIONAL AS5506/Z BLESS Annex v0.9 Page 121 of 159

zj̀1zj̀2

zju2zju1

i1[e = i2]

zj̀1

zju1 = `2

zju2

i1 y i2

zj̀1 = `2

zju1 = u2

i1 � i2

Figure 1.3: Lattice Combinations

zj̀1

zju1zj̀2

zju2

i1 = (V1, E1)

i2 = (V2, E2)

Figure 1.2: Two Lattices

(6) Lattices may combined into new lattices in three ways: sequential, concurrent,
and insertion. Consider two lattices i1 = 〈V1, E1〉 and i2 = 〈V2, E2〉 that have
no vertices in common, V1 ∩ V2 = ∅, least elements `1 ∈ V1 and `2 ∈ V2, and
upper bounds u1 ∈ V1 and u2 ∈ V2.

(7) Their sequential lattice combination, i1 y i2, may be performed as follows:
substitute u1 for `2 in V2 and E2, then form the union of the vertices and edges,
isc = 〈V1 ∪ V2, E1 ∪ E2〉.

(8) Their concurrent lattice combination, i1 � i2, may be performed as follows:
substitute u1 for u2, and `1 for `2 in V2 and E2, then form the union of the
vertices and edges, icc = 〈V1 ∪ V2, E1 ∪ E2〉.

(9) Their insertion combination, i1[e = i2], may be performed as follows: choose
an edge e ∈ E1, e = 〈v j, vk〉, remove it from from E1, substitute v j for `2,
and vk for u2 in V2 and E2, then form the union of the vertices and edges,

iic = 〈V1 ∪ V2, E1 ∪ E2〉.

Appendix 1.10 Meaning

(1) The meaning of BA2015 language constructs is defined by giving an interpretation within a context for a
subject :
Mcontext~subject� ≡ interpretation
where

context if given, is usually a state or set of states

subject is some construct in BA2015

interpretation is the defining formula for that subject, in that context

Chapter 1. Appendix: Mathematics 1.10. Meaning

SAE INTERNATIONAL AS5506/Z BLESS Annex v0.9 Page 122 of 159

Appendix 1.11 Time

(1) It is important to distinguish model time from real time. Model time is a mathematical abstraction useful for
defining what a system is supposed to do. Real time is where the actual systems will operate. Model time
is the same everywhere in the system, and is non-negative and real, t ∈ R ∧ t ≥ 0. Real time is different
everywhere; synchronous temporal domains are limited in volume by the speed of light. Great care must
be used for information that flows across temporal domain boundaries. Defining such temporal domains in
AADL using precise, model time is means to make them nicely work together in real time when integrated
into an operational system.

(2) Periods discretize time exactly in BA2015 by choosing a countably-infinite subset of R,

Pd = {p j | p j = d j for all j ∈ N0}

where d is the period’s duration, and d j is multiplication of d by j.

(3) Defining the system’s hyperperiod is naturally the product of all of the different durations:4

h ≡
∏
d∈D

d

where D is the set of all different durations in the system.5

(4) The present instant is called now.

(5) Many entities in BA2015 have sensible time of occurrence, T , such as events.

T~e� ≡ t | t ∈ R ∧ t ≥ 0 ∧ e occurs at t

(6) Durations are continuous sets of non-negative real numbers. Commas denote open ranges that do not
include the upper and/or lower bound: “..”=closed, includes both endpoints; “,,”=open both, neither endpoint
included; “,.”=open left, lower bound not included; “.,”=open right, upper bound not included.

{l..u} ≡ { m | m ∈ R ∧ m ≥ l ∧ m ≤ u }
{l, , u} ≡ { m | m ∈ R ∧ m > l ∧ m < u }
{l, .u} ≡ { m | m ∈ R ∧ m < l ∧ m ≤ u }
{l., u} ≡ { m | m ∈ R ∧ m ≥ l ∧ m < u }

(7) Frequently, time will be used to define the context of meaning. Subscripted time as context notation
Mt~X� ≡ · · · is used to define the meaning for whatever X is, at a given time t. This notation is used
in DZ.9.3.2 and DZ.9.4.1 to define temporal meaning for Assertions.

Appendix 1.12 Values

(1) A value is a mathematical object. A type is a set of values (see DZ.8 Type). Values used in BA2015
are the same as the AADL Data Modeling Annex and AADL property values (which have records, but not

4In cases where every system-level clock is a multiple of the same reference clock, then least-common multiple of different durations can
suffice.

5∏ means “product of”, usually defined over all of the numbers in a given set

Chapter 1. Appendix: Mathematics 1.11. Time

SAE INTERNATIONAL AS5506/Z BLESS Annex v0.9 Page 123 of 159

arrays).

(2) Usually, values are singular: numbers in N0, Z, Q, R, or C; boolean in B; a character (enclosed in apostro-
phes); a string (enclosed in quotation marks); or an enumeration literal (sequence of alphanumeric charac-
ters starting with a letter).

(3) More complex values are constructed from sets of pairs. Records are sets of pairs in which the first element
is a record field identifier, and the second is the value of that field. Arrays are sets of pairs in which the first
element is an integer index, and the second is the value of that index. Record and array values are functions
in which the first element of the pair is unique. Array values generally constrain the second element of pairs
to the same type. Of course, array element and record field values can be themselves be arrays or records,
making arbitrarily complex values.

(4) The bottom sign, ⊥, represents the absence of a value at a given time. The absence of value is also called
null.

(5) The clock operator ˆdetermines when something has value. At time t,

Mt~p̂� ≡
f alse whenMt~p� = ⊥

true otherwise

Appendix 1.13 States

(1) BA2015 uses two kinds of states:

lattice states variable-value bindings during actions

machine states source and destination of transitions

Appendix 1.13.1 Lattice States

(1) A lattice state is a set of pairs of variable names with values, with perhaps a time of the moment of occur-
rence.

L = ({s1, s2, . . . , sm}, tS) sk = 〈nk,vk〉 tS ∈ R ∧ tS ≥ 0

Two states are equal if-and-only-if they have the same variables and those variables have the same values,
but not necessarily the same time of occurrence. For states V and U,

V = ({v1, v2, . . . , vm}, tV) and U = ({u1, u2, . . . , um}, tU)

V = U ≡ {v1, v2, . . . , vm} = {u1, u2, . . . , um}

Execution lattices satisfying temporal logic formulas have states as vertices (nodes).

Chapter 1. Appendix: Mathematics 1.13. States

SAE INTERNATIONAL AS5506/Z BLESS Annex v0.9 Page 124 of 159

Appendix 1.13.2 Behavior States

(1) A behavior state is declared in the states section of thread behaviors (DZ.3.2), and may be used as sources
or destinations of transitions.

Q = (s, L)

Where s is a behavior state label, and L is a lattice state defining values of variables and time of occur-
rence.

Appendix 1.14 Arithmetic

(1) Axiomatic definitions of arithmetic have been of interest to mathematicians for centuries. For BA2015, Peano
arithmetic will be assumed for natural numbers, N0, extended appropriately for Z, Q, R, and C.

Appendix 1.15 Logic

(1) A logic is formal mathematical system for reasoning about a domain of interest. A logic consists of rules
defined in terms of

symbols a set of graphical characters

formulas a set of sequences of symbols

axioms a set of distinguished formulas known to be true

rules a set of inferences to prove additional formulas from axioms, given formulas, and previously proved
formulas

Not all sequences of symbols are formulas. Formulas are well-formed sequences of symbols. Formulas
must be grammatically-correct to have meaning. A logic usually defines which sequences of symbols are
formulas with a grammar.

To satisfy a formula means choosing values for its symbols such that the formula is true. A formula for which
no choice of values for symbols is true is unsatisfiable. A formula always true regardless of chosen values
for symbols is tautology.

The following formulas are assumed as axiomatic (eg. tautologies), with b, c, and d representing boolean-
valued predcates, r being a bounded range, and j being an element in that range:6

Axiom 1 (Complement). b ≡ ¬(¬b)
Axiom 2 (Excluded Middle). b ∨ ¬b
Axiom 3 (Contradiction). ¬(b ∧ ¬b)

6as in U.S. Pat. No. 5,867,649, col. 40, lines 40-70

Chapter 1. Appendix: Mathematics 1.14. Arithmetic

SAE INTERNATIONAL AS5506/Z BLESS Annex v0.9 Page 125 of 159

Axiom 4 (Implication). a→ b ≡ ¬a ∨ b
Axiom 5 (Equality). a = b ≡ a→ b ∨ b→ a
Axiom 6 (Disjunction). c ∨ c ≡ c
Axiom 7 (Disjunction). c ∨ true ≡ true
Axiom 8 (Disjunction). c ∨ f alse ≡ c
Axiom 9 (Disjunction). c ∨ (c ∧ b) ≡ c
Axiom 10 (Disjunction). b ∨ c ≡ c ∨ b
Axiom 11 (Disjunction). b→ (b ∨ c)
Axiom 12 (Conjunction). b ∧ b ≡ b
Axiom 13 (Conjunction). b ∧ true ≡ b
Axiom 14 (Conjunction). b ∧ f alse ≡ f alse
Axiom 15 (Conjunction). b ∧ (c ∨ b) ≡ b
Axiom 16 (Conjunction). b ∧ c ≡ c ∧ b
Axiom 17 (Conjunction). (b ∧ c)→ b
Axiom 18 (Distribution). b ∨ (c ∧ d) ≡ (b ∨ c) ∧ (b ∨ d)
Axiom 19 (Distribution). b ∧ (c ∨ d) ≡ (b ∧ c) ∨ (b ∧ d)
Axiom 20 (Universal Quantification). ∀ j ∈ r | (b ∧ c) ≡ (∀ j ∈ r | b) ∧ (∀ j ∈ r | c)
Axiom 21 (Existential Quantification). ∃ j ∈ r | (b ∨ c) ≡ (∃ j ∈ r | b) ∨ (∃ j ∈ r | c)

Appendix 1.16 Computation ≡ Satisfaction

(1) BA2015 defines computation as satisfaction of interval temporal logic formulas by lattices of states.

Mi~w� =true (construct an interval i such that the formula w is true)

(2) Each BA2015 program may be satisfied by a huge number of different lattices, all of which arrive at the same
result.7 The set of satisfying lattices is so large, it is effectively countably infinite. However, it suffices to
consider the canonical member of the set of satisfying lattices–the shortest and bushiest lattice. Maximizing
opportunities for concurrent execution is paramount for supercomputing, but embedded systems with multi-
core systems-on-chip may benefit from rich opportunities for concurrent execution.

(3) For just the Action annex sublanguage, the states defined in 1.13 suffice and need no more reference in
time than its position in the lattice. For satisfying lattices of states for the BA2015 annex sublanguage need
time-stamps. Therefore, the set of variable-value pairs comprising a state is augmented with a real-valued
time-stamp.

L = ({s1, s2, . . . , sm}, ts) sk = 〈nk,vk〉

where ts the time lattice state L is created. Lattice state L says nothing about the values of variables at
any time other than ts. Other lattice states could have occurred infinitesimally earlier or later. Usually,
only the time-stamps of least elements and upper bounds of lattices matter, and will be ignored when they
don’t.

7Every satisfying lattice will have equal states for their least elements (start) and upper bounds (end).

Chapter 1. Appendix: Mathematics 1.16. Computation ≡ Satisfaction

SAE INTERNATIONAL AS5506/Z BLESS Annex v0.9 Page 126 of 159

Appendix 1.17 Clock

(1) A clock is a boolean-valued operator over machine states, S, variables, V, and ports, P which is true only
when its subject has a (non-null) value: x̂ ≡ Mnow~x , ⊥�. The set of all possible clock formulas, FS VP, is
defined with the grammar of predicate (DZ.9.3) augmented with the following as boolean values:

1. Ports: p̂ ≡ Mnow~p , ⊥� for port p.

2. Variables: v̂ ≡ Mnow~v , ⊥� for variable v.

3. States: ŝ ≡ Mnow~S tate(s)� where S tate(s) means the state machine is currently in state s.

4. Never: c = 0̂ ≡ (∀t = now : ¬c) where c is a clock formula c∈FS VP.

5. Always c = 1̂S VP ≡ (∀t = now : c) where c is a clock formula c∈FS VP.

6. Difference: f -̂ g ≡ (f̂ and not ĝ) for any f,g∈FS VP.

7. Next: v’=e when used in a guard of automata (D1.19) means that variable v will hold the value of
expression e upon entering the destination state.8

9

(2) For example, the formula â and b̂ = 0̂ stipulates that ports a and b should never be assigned values
simultaneously. 10

Appendix 1.18 Timed Formula

(1) The clock formula set FA of an automaton A is inductively extended to the timed formula set F]
A with atoms

pertaining to real-time properties of A. Real time properties f] ∈ F]
A are formed with the atoms n ∈ N0 and

tp, (resp. t′p) to mean the date (number of timing periods from start) of the previous, (resp. next) occurrence
of p, with integer sub-expressions f] + g], f] − g], for all f], g] in F]

A, and with relations f] = g], f] < g] for all
f] + g] in F]

A. 11

(2) The duration of the timing period need not be the period of the automaton (if it even has one), but is much
shorter to discretize time for the system as a whole fine enough to accurately model communication in the
real system. 12

(3) For example, the synchrony of two ports a, b is expressed as â = b̂ in FA. In F]
A, it can be approximated

by d ≤ ta < d′ and d ≤ tb < d′ , by considering d to be the dispatch signal or date of the parent component.
Literally, it means that the dates ta and tb of all occurrences of a and b must always occur between the
dispatch date d and the next one. 13

8Not to be confused with the use of ’ as a temporal operator for periodic threads meaning next period.
9JP

10JP
11JP
12JP
13JP

Chapter 1. Appendix: Mathematics 1.17. Clock

SAE INTERNATIONAL AS5506/Z BLESS Annex v0.9 Page 127 of 159

Appendix 1.19 Automata

(1) The behavior of a thread or device component defined with a BA2015 annex subclause is equivalent to an
automation,14 defined as a tuple:

A = (S A, s0,VA, PA, FA,TA,CA)

where

S A the set of initial, complete, execute, and final states of A

s0 the initial state of A

VA the set of local variables of A; DVA is the set of all possible values of local variables

PA the set of ports of A, PA= IA∪OA, the input and output ports15 DIA and DOA are sets of all possible values
of inputs and outputs

FS VP is the set of all possible clock formulas over vocabulary WA ≡ S A ∪ VA ∪ PA ∪ V ′A

TA the set of transitions TA ⊂ S A × D
VA × DIA × FS VP → S A × D

VA × DOA × FS VP

where (s,Vs, IA, g, d,Vd,OA, f) ∈ TA

• source state s ∈ S A,

• variable valuations ∀v ∈ VA : MVs~v� ∈ D,

• input port values ∀i ∈ IA : M~i� ∈ D, and

• source clock (guard) formula g ∈ FS VP

map to

• the destination state d ∈ S A,

• updated variable values ∀v′ ∈ VA : MVd~v
′� ∈ D,

• output port values ∀o ∈ OA : M~o� ∈ D, and

• destination clock (finish) formula f ∈ FS VP.

CA the timing constraint CA ∈ FS VP must equal 0̂ defines timing and synchronization behavior.
16

(2) Let the set of all source behavior states of A (D1.13.2) and inputs be QA ≡ S A ×D
VA ×DIA . Equivalently, let

the set of all destination behavior states and outputs of A be Q′A ≡ S ′A×DV ′A ×DOA . Then TA ∈ QA×FS VP →

Q′A × FS VP. As shorthand, transitions may be represented as a quadruple (s, g, d, f) ∈ TA for source, guard,
destination, and f inish, or a triple (s, g, d) where f is assumed to be true. 17

14denoted by a capital letter, here ‘A’
15in out ports are members of both IA and OA
16JP
17JP

Chapter 1. Appendix: Mathematics 1.19. Automata

SAE INTERNATIONAL AS5506/Z BLESS Annex v0.9 Page 128 of 159

(3) A transition that performs action w when changing from source state s with source clock formula (guard)
g to destination state d with destination clock formula (finish) f is written as T (s, g, d, f)[w]. This notation
will be used to define semantics for actions–particularly when defining complex actions in terms of simpler
actions such as loops, action set, and action sequences. 18

(4) In defining semantics with automata, a single automata may be translated into a transition system containing
more than one transition, replacing the original transition. For T ∈ TA:

T ⇒ T1 ∪ T2 ≡ (TA − T) ∪ T1 ∪ T2

(T is removed from the set of transitions TA, to which T1 and T2 are added.)19

Appendix 1.20 Synchronous Product

(1) The synchronous product of automata A = (S A, s0,VA, PA, FA,TA,CA) and B = (S B, t0,VB, PB, FB,TB,CB) is
defined A|B = (S AB, (s0, t0),VAB, PAB, FAB,TAB,CAB) as follows:

S AB = S A × S B

VAB = VA ∪ VB

PAB = PA ∪ PB

FAB = FA ∨ FB
20

TAB = {((s1, s2), g1 ∧ g2, (d1, d2), f1 ∧ f2) | (s1, g1, d1, f1) ∈ TA ∧ (s2, g2, d2, f2) ∈ TB
21

CAB = CA ∨CB

22

(2) Product is commutative, associative, has neutral element ({s}, s, ∅, ∅, ∅, ∅, 0̂) and, for deterministic automata,
idempotent. 23

(3) The synchronous composition (immediate connection) of two automata A and B communicating through a
port p is represented by the product A|FIFOp|B where

FIFOp = {(s1, v′ = pin, s2, true), (s2, true, s1, pout = v)}

represents the point-to-point one-place first-in-first-out behavior of port p. A port queue of size n can be
specified as a series of n one-place FIFO buffers.24 25

18JP
19JP
20check with J.P.
21check with J.P.
22JP
23JP
24Wouldn’t this force n steps even if the FIFO had only a single element?
25JP

Chapter 1. Appendix: Mathematics 1.20. Synchronous Product

SAE INTERNATIONAL AS5506/Z BLESS Annex v0.9 Page 129 of 159

Appendix 1.21 Small Step

(1) A small step is execution of a single transition of an automaton (D1.19), T = (s, v, i, g, d, v′, o, f) . A small
step leaves a source behavior state (s, v), having state label s and (persistent) variable valuation v, with the
values of in ports i, and guard clock formula g, to enter destination behavior state (d, v′), having state label d
and updated variable valuation v′, sending values to out ports o, satisfying finish clock formula f . 26

Appendix 1.22 Big Step

(1) A big step is a finite series of small steps, such that the source state of the first transition and the destination
of the last transition are complete states. 27

(2) Let s be the starting complete state, and e be the ending complete state of a big step B. Then B will be a
sequence of small steps T1 . . . Tn such that v0 is the starting values of variables, vn is the ending values of
variables, i is the values received on in ports, o is the values sent on out ports, g is the dispatch condition,
and f is the final formula: 28

T1 = (s, v0, i, g, s1, v1,⊥, true)
. . .
T j = (s j, v j, i, true, s j+1, v j+1,⊥, true)
. . .
Tn = (sn, vn, i, true, e, vn+1, o, f)
which presumes that input values are frozen at dispatch time, and output values sent at completion. If inputs
change during a big step, then replace the i in each transition with i0, etc. as appropriate. 29

Appendix 1.23 Trace

(1) A port trace is a sequence of (possibly null) values of a port. A synchronous port trace has an entry for
each atom n ∈ N0 as in D1.18 with ⊥ when the port has no value: (p : p0, p1, . . .). An execution trace of
a thread is a set of traces of its ports: {(p : p0, p1, . . .)(q : q0, q1, . . .)(r : r0, r1, . . .)}. An asynchronous trace
(marked with]) removes all the null values. 30

(2) Consider execution traces B1 = {(x : 2,⊥,⊥,⊥)(y : ⊥, 2, 1, 0)} and B2 = {(x : 2,⊥,⊥)(y : 2, 1, 0)}. The
asynchronous trace of B1 is B1

] = {(x : 2)(y : 2, 1, 0)}. The asynchronous trace of B2 is B2
] = {(x : 2)(y :

2, 1, 0)}. Therefore B1
] = B2

]. 31

26JP
27JP
28JP
29JP
30JP
31JP

Chapter 1. Appendix: Mathematics 1.21. Small Step

Chapter 2
Appendix: Lexicon

*

(1) Numeric literals, whitespace, identifiers and comments follow AS5506B §15 Lexical Elements.1 String literals
are enclosed in ‘ ’ like LaTeX.

Appendix 2.1 Character Set

(1) The only characters allowed outside of comments are the graphic characters and format effectors.

character ::= graphic_character | format_effector
| other_control_character

graphic_character ::= identifier_letter | digit | space_character
| special_character

(2) The character repertoire for the text of BLESS annex libraries, subclauses, and properties consists of the
collection of characters called the Basic Multilingual Plane (BMP) of the ISO 10646 Universal Multiple-Octet
Coded Character Set, plus a set of format effectors and, in comments only, a set of other control functions;
the coded representation for these characters is implementation defined (it need not be a representation
defined within ISO-10646-1).

(3) The description of the language definition of BLESS uses the graphic symbols defined for Row00: Basic
Latin and Row 00: Latin-1 Supplement of the ISO 10646 BMP; these correspond to the graphic symbols of
ISO 8859-1 (Latin-1); no graphic symbols are used in this standard for characters outside of Row 00 of the
BMP. The actual set of graphic symbols used by an implementation for the visual representation of the text
of BLESS is not specified.

(4) The categories of characters are defined as follows:

1BA D.7(6)

130

SAE INTERNATIONAL AS5506/Z BLESS Annex v0.9 Page 131 of 159

identifier_letter
upper_case_identifier_letter | lower_case_identifier_letter

upper_case_identifier_letter
Any character of Row 00 of ISO 10646 BMP whose name begins

Latin Capital Letter.

lower_case_identifier_letter
Any character of Row 00 of ISO 10646 BMP whose name begins
Latin Small Letter.

digit ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

space_character
The character of ISO 10646 BMP named Space.

special_character
Any character of the ISO 10646 BMP that is not reserved for a control
function, and is not the space_character, an identifier_letter,
or a digit.

format_effector
The control functions of ISO 6429 called character tabulation (HT),
line tabulation (VT), carriage return (CR), line feed (LF), and
form feed (FF).

other_control_character
Any control character, other than a format_effector, that is allowed
in a comment; the set of other_control_functions allowed in comments
is implementation defined.

(5) Table 2.1 defines names of certain special characters.

Table 2.1: Special Character Names
Symbol Name Symbol Name

" quotation mark # number sign
= equals sign underline
+ plus sign , comma
- minus . dot
: colon ; semicolon
(left parenthesis) right parenthesis
[left square bracket] right square bracket
{ left curly bracket } right curly bracket
& ampersand ˆ caret

Appendix 2.2 Lexical Elements, Separators, and Delimiters

(1) The text of BLESS annex libraries, subclauses, and properties consist of a sequence of separate lexical
elements. Each lexical element is formed from a sequence of characters, and is either a delimiter, an

Chapter 2. Appendix: Lexicon 2.2. Lexical Elements, Separators, and Delimiters

SAE INTERNATIONAL AS5506/Z BLESS Annex v0.9 Page 132 of 159

identifier, a reserved word, a numeric literal, a character literal, a string literal, or a comment. The meaning
of BLESS annex libraries, subclauses, and properties depends only on the particular sequences of lexical
elements that form its compilations, excluding comments.

(2) The text of BLESS annex libraries, subclauses, and properties are divided into lines. In general, the repre-
sentation for an end of line is implementation defined. However, a sequence of one or more format effectors
other than character tabulation (HT) signifies at least one end of line.

(3) In some cases an explicit separator is required to separate adjacent lexical elements. A separator is any of
a space character, a format effector, or the end of a line, as follows:

• A space character is a separator except within a comment, or a string literal.

• Character tabulation (HT) is a separator except within a comment.

• The end of a line is always a separator.

(4) A delimiter is either one of the following special characters

() [] { } , . : ; = * + -

or one of the following compound delimiters each composed of two or three adjacent special charac-
ters

:= <> != :: => -> .. -[]->)˜>

(5) The following names are used when referring to compound delimiters:

Delimiter Name
:= assign

<> != unequal
:: qualified name separator

=> association
-> implication
-[left step bracket

]-> right step bracket
)˜> right conditional bracket

Appendix 2.3 Identifiers

(1) Identifiers are used as names. Identifiers are case sensitive.2

identifier ::= identifier_letter {[] letter_or_digit}*
letter_or_digit ::= identifier_letter | digit

• An identifier shall not be a reserved word in either BLESS or AADL.

• Identifiers do not contain spaces, or other whitespace characters.

2Identifiers in AADL are case insensitive.

Chapter 2. Appendix: Lexicon 2.3. Identifiers

SAE INTERNATIONAL AS5506/Z BLESS Annex v0.9 Page 133 of 159

Appendix 2.4 Numeric Literals

(1) There are four kinds of numeric literal: integer, real, complex, and rational. A real literal is a numeric
literal that includes a point, and possibly an exponent; an integer literal is a numeric literal without a point;
a complex literal is a pair of real literals separated by a colon; a rational literal is a pair of integer literals
separated by a bar.

(2) Peculiarly, negative numbers cannot be represented as numeric literals. Instead unary minus preceding a
numeric literal represents negative literals instead.

numeric_literal ::=
integer_literal | real_literal | rational_literal | complex_literal

(3) Integer values are equivalent to Base_Types::Integer values as defined in the AADL Data Modeling Annex
B.3

integer_literal ::= decimal_integer_literal | based_integer_literal

real_literal ::= decimal_real_literal

Appendix 2.4.1 Decimal Literals

(1) A decimal literal is a numeric literal in the conventional decimal notation (that is, the base is ten).

decimal_integer_literal ::= numeral

decimal_real_literal ::= numeral . numeral [exponent]

numeral ::= digit {[] digit}*
exponent ::= (E|e) [+] numeral | (E|e) - numeral

(2) An underline character in a numeral does not affect its meaning. The letter E of an exponent can be written
either in lower case or in upper case, with the same meaning.

(3) An exponent indicates the power of ten by which the value of the decimal literal without the exponent is to be
multiplied to obtain the value of the decimal literal with the exponent.

Appendix 2.4.2 Based Literals

(1) A based literal is a numeric literal expressed in a form that specifies the base explicitly.

based_integer_literal ::= base # based_numeral # [positive_exponent]

base ::= digit [digit]

based_numeral ::= extended_digit [] extended_digit

extended_digit ::= digit | A | B | C | D | E | F | a | b | c | d | e | f

3BA D.7(7)

Chapter 2. Appendix: Lexicon 2.4. Numeric Literals

SAE INTERNATIONAL AS5506/Z BLESS Annex v0.9 Page 134 of 159

(2) The base (the numeric value of the decimal numeral preceding the first #) shall be at least two and at most
sixteen. The extended digits A through F represent the digits ten through fifteen respectively. The value of
each extended digit of a based literal shall be less than the base.

(3) The conventional meaning of based notation is assumed. An exponent indicates the power of the base by
which the value of the based literal without the exponent is to be multiplied to obtain the value of the based
literal with the exponent. The base and the exponent, if any, are in decimal notation. The extended digits A
through F can be written either in lower case or in upper case, with the same meaning.

Appendix 2.4.3 Rational Literals

A rational literal is the ratio of two integers.

rational_literal ::=
[[-] dividend_integer_literal | [-] divisor_integer_literal]

Appendix 2.4.4 Complex Literals

A complex literal is a pair of real numbers for the real part and imaginary part.

complex_literal ::=
[[-] real_literal : [-] imaginary_part_real_literal]

Appendix 2.5 String Literals

(1) A string literal is formed by a sequence of graphic characters (possibly none) enclosed between two string
brackets: ‘ and ’.4

string_literal ::= "{string_element}*"

string_element ::= "" | non_string_bracket_graphic_character

(2) The sequence of characters of a string literal is formed from the sequence of string elements between the
string bracket characters, in the given order, with a string element that is "" becoming " in the sequence of
characters, and any other string element being reproduced in the sequence.

(3) A null string literal is a string literal with no string elements between the string bracket characters.

Appendix 2.6 Comments

(1) A comment starts with two adjacent hyphens and extends up to the end of the line. A comment may appear
on any line of a program.

4BLESS string literals are different from AADL string literals which use ” as string bracket characters.

Chapter 2. Appendix: Lexicon 2.5. String Literals

SAE INTERNATIONAL AS5506/Z BLESS Annex v0.9 Page 135 of 159

comment ::= --{non_end_of_line_character}*
(2) The presence or absence of comments has no influence on whether a program is legal or illegal. Further-

more, comments do not influence the meaning of a program; their sole purpose is the enlightenment of the
human reader.

Chapter 2. Appendix: Lexicon 2.6. Comments

Chapter 3
Appendix: Package and Properties

*

Two property sets and a package of data types are predeclared.

(1) Property set BLESS defines:

Assertion what is true about an event or data sent by, or arriving at a port

Typed data type as defined in Chapter Z.8

Invariant what is always true about a component

Precondition what must be true before a subprogram is called

Postcondition what will be true when a subprogram returns� �
property set BLESS is

Assertion : aadlstring applies to (all);
Typed : aadlstring applies to (all);
Invariant : aadlstring applies to (all);
Precondition : aadlstring applies to (subprogram);
Postcondition : aadlstring applies to (subprogram);

end BLESS;� �
(2) Property set BLESS Properties defines:

Supported Operators what operators apply to elements of a type

Supported Relations what relations apply to elements of a type

Radix radix position for fixed-point types� �
property set \package_Properties is

with AADL_Project;
Supported_Operators : list of aadlstring applies to (data);

--used to define arithmetic operator symbols supported by a type

136

SAE INTERNATIONAL AS5506/Z BLESS Annex v0.9 Page 137 of 159

Supported_Relations : list of aadlstring applies to (data);
--used to define relation symbols supported by a type

Radix : AADL_Project::Size_Units applies to (data);
--location of the radix point for fixed-point representation
--counting from most significant bit

end BLESS_Properties;� �
(3) These data components in the package, BLESS Types represent ideal values: integers without upper or

lower bounds, real numbers of infinite precision, strings with unbound length. Actual types, with ranges and
bounds, must substitute for ideal types, either explicitly or automatically.

(4) Chapter Z.8 uses the standard Data Modeling annex (Data Model and Base Types) to define correspon-
dence with types built in to BLESS.� �
package BLESS public
with Base_Types, BLESS_Properties, Data_Model, BLESS;

data Integer extends Base_Types::Integer
properties --operators and relation symbols defined for Integer

BLESS::Typed => "integer";
BLESS_Properties::Supported_Operators =>

("+", "*", "-", "/", "mod", "rem", "**");
BLESS_Properties::Supported_Relations => ("=", "!=", "<", "<=", ">=", ">");

--how should conversion routines be declared?
end Integer;

data Natural extends Base_Types::Natural
properties --operators and relation symbols defined for Natural

BLESS::Typed => "natural";
BLESS_Properties::Supported_Operators =>

("+", "*", "-", "/", "mod", "rem", "**");
BLESS_Properties::Supported_Relations => ("=", "!=", "<", "<=", ">=", ">");

end Natural;

data Real extends Base_Types::Float
properties --operators and relation symbols defined for Float

BLESS::Typed => "real";
BLESS_Properties::Supported_Operators => ("+", "*", "-", "/", "**");
BLESS_Properties::Supported_Relations => ("=", "!=", "<", "<=", ">=", ">");

end Real;

data String extends Base_Types::String
properties --operators and relation symbols defined for String

BLESS::Typed => "string";
BLESS_Properties::Supported_Operators => ("+", "-"); --just concatenation
BLESS_Properties::Supported_Relations => ("=", "!=", "<", "<=", ">=", ">");

end String;

data Fixed_Point
properties --operators and relation symbols defined for fixed-point arithmetic

BLESS::Typed => "rational";
BLESS_Properties::Supported_Operators => ("+", "*", "-", "/", "**");
BLESS_Properties::Supported_Relations => ("=", "!=", "<", "<=", ">=", ">");
Data_Model::Data_Representation => Integer;

end Fixed_Point;

data Time extends Real

Chapter 3. Appendix: Package and Properties

SAE INTERNATIONAL AS5506/Z BLESS Annex v0.9 Page 138 of 159

end Time;

data flag extends Base_Types::Boolean --boolean flag
properties

BLESS::Typed=>"boolean";
end flag;

end BLESS_Types;� �

Chapter 3. Appendix: Package and Properties

Chapter 4
Appendix: Alphabetized Grammar

action ::=
basic_action
| behavior_action_block
| alternative | for_loop
| forall_action
| while_loop
| do_until_loop
| locking_action §Z.6.3 p48

actual_assertion_parameter ::=
formal_identifier : actual_assertion_expression §Z.9.4.6 p109

actual_assertion_parameter_list ::=
actual_assertion_parameter

{ , actual_assertion_parameter }* §Z.9.3.5 p100

actual_parameter ::= target | expression §Z.5.8 p45

alternative ::=
if guarded_action { [] guarded_action }+ fi
|
if (boolean_expression_or_relation) behavior_actions
{ elsif (boolean_expression_or_relation)

behavior_actions }*
[else behavior_actions]
end if §Z.6.7 p55

array_range_list ::= natural_range { , natural_range }* §Z.8.7 p85

array_size ::= [natural_value_constant] §Z.3.3 p23

array_type ::= array [array_range_list] of type §Z.8.7 p85

139

SAE INTERNATIONAL AS5506/Z BLESS Annex v0.9 Page 140 of 159

asserted_action ::=
[precondition_assertion]
action
[postcondition_assertion] §Z.6.2 p47

assertion ::=
<< (assertion_predicate
| assertion_function
| assertion_enumeration
| assertion_enumeration_invocation) >> §Z.9.2 p93

assertion_annex_library ::=
annex Assertion {** { assertion }+ **} ; §Z.9.1 p92

assertion_enumeration ::=
asserion_enumeration_label_identifier :

parameter_identifier +=>
enumeration_pair { , enumeration_pair }* §Z.9.2.4 p96

assertion_enumeration_invocation ::=
+=> assertion_enumeration_label_identifier
(actual_assertion_parameter) §Z.9.4.7 p109

assertion_expression ::=
assertion_subexpression

[{ + assertion_subexpression }+
| { * assertion_subexpression }+
| - assertion_subexpression
| / assertion_subexpression
| ** assertion_subexpression
| mod assertion_subexpression
| rem assertion_subexpression]

| sum logic_variables [logic_variable_domain]
of assertion_expression

| product logic_variables [logic_variable_domain]
of assertion_expression

| numberof logic_variables [logic_variable_domain]
that subpredicate §Z.9.4 p104

assertion_function ::=
[label_identifier : [formal_assertion_parameter_list]]
:= (assertion_expression | conditional_assertion_function) §Z.9.2.3 p95

assertion_function_invocation ::=
assertion_function_identifier
([assertion_expression |
actual_assertion_parameter
{ , actual_assertion_parameter }*]) §Z.9.4.6 p109

Chapter 4. Appendix: Alphabetized Grammar

SAE INTERNATIONAL AS5506/Z BLESS Annex v0.9 Page 141 of 159

assertion_predicate ::=
[label_identifier : [formal_assertion_parameter_list] :]
predicate §Z.9.2.2 p94

assertion_range ::=
assertion_subexpression range_symbol assertion_subexpression §Z.9.3.6 p101

assertion_subexpression ::=
[- | abs] timed_expression
| assertion_type_conversion §Z.9.4 p105

assertion_type_conversion ::=
(natural | integer | rational | real | complex | time)
parenthesized_assertion_expression §Z.9.4 p105

assertion_value ::=
now | tops | timeout
| value_constant
| variable_name
| assertion_function_invocation
| port_value §Z.9.4.3 p107

assignment ::=
variable_name [’] := (expression | record_term | any) §Z.6.4.2 p50

(for subprograms)
basic_action ::=

skip | assignment | simultaneous_assignment | when_throw
| subprogram_invocation §Z.10.2 p114

(for threads)
basic_action ::=

skip
| assignment
| simultaneous_assignment
| communication_action
| timed_action
| when_throw
| combinable_operation
| issue_exception
| computation_action §Z.6.4 p49

behavior_action_block ::=
[quantified_variables] { [behavior_actions] }
[timeout behavior_time] [catch_clause] §Z.6.8 p57

behavior_actions ::=
asserted_action
| sequential_composition
| concurrent_composition §Z.6.1 p47

Chapter 4. Appendix: Alphabetized Grammar

SAE INTERNATIONAL AS5506/Z BLESS Annex v0.9 Page 142 of 159

behavior_annex ::=
[assert { assertion }+]
[invariant assertion]
[variables]
states { behavior_state }+
[transitions] §Z.3.1 p18

behavior_state ::=
behavior_state_identifier

: [initial] [complete] [final] state [assertion] ; §Z.3.2 p19

behavior_time ::= integer_expression unit_identifier §Z.6.4.4 p51

behavior_transition ::=
[behavior_transition_label :]
source_state_identifier { , source_state_identifier }*
-[[transition_condition]]-> destination_state_identifier

[{ [behavior_actions] }] [assertion] ; §Z.3.4 p24

behavior_transition_label ::=
transition_identifier [[priority_natural_literal]] §Z.3.4 p24

behavior_variable ::=
local_variable_declarator { , local_variable_declarator }*
: [modifier] type [:= value_constant] [assertion] ; §Z.3.3 p23

case_choice ::=
(boolean_expression_or_relation) -> expression §Z.7.7 p76

case_expression ::=
(case_choice { , case_choice }+) §Z.7.7 p76

catch_clause ::=
catch ((exception_label : basic_action))+ §Z.6.11 p63

combinable_operation ::=
fetchadd
(target_variable_name ,

arithmetic_expression [, result_identifier])
| (fetchor | fetchand | fetchxor)
(target_variable_name , boolean_expression
[, result_identifier])

| swap
(target_variable_name , reference_variable_name
, result_identifier) §Z.6.13 p66

communication_action ::=
subprogram_invocation
| output_port_name ! [(expression)]
| input_port_name ? (target)
| frozen_input_port_name >> §Z.5.1 p37

completion_relative_timeout_catch ::= timeout behavior_time §Z.4.2 p32

Chapter 4. Appendix: Alphabetized Grammar

SAE INTERNATIONAL AS5506/Z BLESS Annex v0.9 Page 143 of 159

component_element_reference ::=
subcomponent_identifier | bound_prototype_identifier
| feature_identifier | self §Z.7.2.2 p72

computation_action ::=
computation (behavior_time [.. behavior_time])
[in binding (processor_unique_component_classifier_reference
{ , processor_unique_component_classifier_reference }+)] §Z.6.4.4 p51

concurrent_composition ::=
asserted_action { & asserted_action }+ §Z.6.6 p54

conditional_assertion_expression ::=
(predicate ?? assertion_expression
: assertion_expression) §Z.9.4.4 p107

conditional_assertion_function ::=
(condition_value_pair { , condition_value_pair }*) §Z.9.4.5 p108

conditional_expression ::=
(boolean_expression_or_relation ??

expression : expression)
|
(if boolean_expression_or_relation then

expression else expression) §Z.7.6 p75

condition_value_pair ::=
parenthesized_predicate -> assertion_expression §Z.9.4.5 p108

constant_number_range ::=
[[-] numeric_constant .. [-] numeric_constant] §Z.8.6 p83

data_component_name ::=
{ package_identifier :: }* data_component_identifier
[. implementation_identifier] §Z.8.4 p82

declarator ::= identifier { array_size }* §Z.3.3 p23

dispatch_condition ::=
on dispatch [dispatch_expression] [frozen frozen_ports] §Z.4.1 p30

dispatch_conjunction ::=
dispatch_trigger { and dispatch_trigger }* §Z.4.1 p30

dispatch_expression ::=
dispatch_conjunction { or dispatch_conjunction }*
| stop
| dispatch_relative_timeout_catch
| completion_relative_timeout_catch
| provides_subprogram_access_identifier §Z.4.1 p30

dispatch_relative_timeout_catch ::= timeout §Z.4.2 p32

dispatch_trigger ::= in_event_port_name | in_event_data_port_name
| port_event_timeout_catch §Z.4.1 p30

Chapter 4. Appendix: Alphabetized Grammar

SAE INTERNATIONAL AS5506/Z BLESS Annex v0.9 Page 144 of 159

do_until_loop ::=
do
[invariant assertion]
[bound integer_expression]
behavior_actions
until(boolean_expression_or_relation) §Z.6.10.3 p63

enumeration_pair ::= enumeration_literal_identifier -> predicate §Z.9.2.4 p96

enumeration_type ::=
enumeration
(defining_enumeration_literal_identifier
{ , defining_enumeration_literal_identifier }*) §Z.8.5 p82

event ::= < port_variable_or_state_identifier > §Z.9.3.10 p103

event_expression ::=
[not] event
| event_subexpression (and event_subexpression)+
| event_subexpression (or event_subexpression)+
| event - event §Z.9.3.10 p103

event_subexpression ::=
[always | never] (event_expression) | event §Z.9.3.10 p103

event_trigger ::=
in_event_subcomponent_port_reference
| in_event_data_subcomponent_port_reference
| (trigger_logical_expression) §Z.3.7 p28

exception_label ::= (exception_identifier)+ | all §Z.6.11 p63

execute_condition ::=
boolean_expression_or_relation | timeout | otherwise §Z.3.5 p26

existential_quantification ::=
exists logic_variables logic_variable_domain
that predicate §Z.9.3.9 p103

Chapter 4. Appendix: Alphabetized Grammar

SAE INTERNATIONAL AS5506/Z BLESS Annex v0.9 Page 145 of 159

expression ::=
subexpression
[{ + numeric_subexpression }+
| { * numeric_subexpression }+
| - numeric_subexpression
| / numeric_subexpression
| mod natural_subexpression
| rem integer_subexpression
| ** numeric_subexpression
| { and boolean_subexpression }+
| { or boolean_subexpression }+
| { xor boolean_subexpression }+
| and then boolean_subexpression
| or else boolean_subexpression] §Z.7.4 p74

expression_or_relation ::=
subexpression [relation_symbol subexpression] §Z.7.5 p75

for_loop ::=
for integer_identifier

in integer_expression .. integer_expression
[invariant assertion]
{ asserted_action } §Z.6.10.2 p62

forall_action ::=
forall variable_identifier { , variable_identifier }*

in integer_expression .. integer_expression
behavior_action_block §?? p??

formal_assertion_parameter ::=
parameter_identifier [˜ type_name] §Z.9.2.1 p94

formal_assertion_parameter_list ::=
formal_assertion_parameter
{ , formal_assertion_parameter }* §Z.9.2.1 p94

formal_expression_pair ::=
formal_identifier => actual_expression §Z.7.8 p77

frozen_ports ::= in_port_name { , in_port_name }* §Z.4.1 p31

function_call ::=
{ package_identifier :: }*
function_identifier ([function_parameters]) §Z.7.8 p77

function_parameters ::=
formal_expression_pair { , formal_expression_pair }* §Z.7.8 p77

guarded_action ::=
(boolean_expression_or_relation)˜> behavior_actions §Z.6.7 p55

index_expression_or_range ::=
integer_expression [.. integer_expression] §Z.7.3 p72

Chapter 4. Appendix: Alphabetized Grammar

SAE INTERNATIONAL AS5506/Z BLESS Annex v0.9 Page 146 of 159

integer_expression ::=
[-]
(integer_assertion_value
| (integer_expression - integer_expression)
| (integer_expression / integer_expression)
| (integer_expression { + integer_expression }+)
| (integer_expression { * integer_expression }+)) §Z.9.3.4 p99

internal_condition ::=
on internal internal_port_name { or internal_port_name }* §Z.3.6 p27

issue_exception ::=
exception
([exception_state_identifier ,] message_string_literal) §Z.6.4.5 p52

locking_action ::=

*!< | *!>
| required_data_access_name !<
| required_data_access_name !> §Z.6.12 p64

logic_variable_domain ::=
in (assertion_expression range_symbol assertion_expression

| predicate) §Z.9.3.8 p102

logic_variables ::=
logic_variable_identifier { , logic_variable_identifier }*
: type §Z.9.3.8 p102

logical_operator ::=
and | or | xor | and then | or else §Z.3.7 p28

mode_condition ::= on trigger_logical_expression §Z.3.7 p27

modifier ::= nonvolatile | constant | shared | spread | final §Z.3.3 p23

name ::=
root_identifier { [index_expression_or_range] }*

{ . field_identifier { [index_expression_or_range] }* }* §Z.7.3 p72

natural_number ::=
natural_integer_literal
| natural_constant_identifier
| natural_property §Z.8.7 p85

natural_range ::= natural_number [.. natural_number] §Z.8.7 p85

number_type ::=
(natural | integer | rational | real | complex | time)
[constant_number_range]
[units aadl_unit_literal_identifier] §Z.8.6 p83

numeric_constant ::= numeric_literal | numeric_property §Z.8.6 p83

parameter ::= [formal_parameter_identifier :] actual_parameter §Z.5.8 p45

Chapter 4. Appendix: Alphabetized Grammar

SAE INTERNATIONAL AS5506/Z BLESS Annex v0.9 Page 147 of 159

parameter_list ::= parameter { , parameter }* §Z.5.8 p45

parenthesized_assertion_expression ::=
(assertion_expression)
| conditional_assertion_expression
| record_term §Z.9.4.2 p106

parenthesized_predicate ::= (predicate) §Z.9.3.7 p102

port_name ::=
{ subcomponent_identifier . }* port_identifier

[[natural_literal]] §Z.5.1 p37

port_event_timeout_catch ::=
timeout (port_identifier { [or] port_identifier }*)

behavior_time §Z.4.2 p33

port_value ::=
in_port_name (? | ’count | ’fresh | ’updated) §Z.7.9 p78

predicate ::=
universal_quantification
| existential_quantification
| subpredicate

[{ and subpredicate }+
| { or subpredicate }+
| { xor subpredicate }+
| implies subpredicate
| iff subpredicate
| -> subpredicate] §Z.9.3 p96

predicate_invocation ::=
assertion_identifier
([assertion_expression | actual_assertion_parameter_list]) §Z.9.3.5 p100

predicate_relation ::=
assertion_subexpression relation_symbol assertion_subexpression
| assertion_subexpression in assertion_range
| shared_integer_name += assertion_subexpression §Z.9.3.6 p101

property ::=
property_constant | property_reference §Z.7.2.1 p71

property_constant ::=
property_set_identifier :: property_constant_identifier §Z.7.2.1 p71

property_field ::=
[integer_value]
| . field_identifier
| . upper_bound
| . lower_bound §Z.7.2.2 p72

property_name ::= property_identifier { property_field }* §Z.7.2.2 p72

Chapter 4. Appendix: Alphabetized Grammar

SAE INTERNATIONAL AS5506/Z BLESS Annex v0.9 Page 148 of 159

property_reference ::=
(# [property_set_identifier ::]
| component_element_reference #
| unique_component_classifier_reference #
| self #)
property_name §Z.7.2.2 p71

quantified_variables ::= declare { behavior_variable }+ §Z.6.8 p57

range_symbol ::= .. | ,. | ., | ,, §Z.9.3.6 p101

record_field ::= defining_field_identifier : type ; §Z.8.8 p86

record_term ::= ({ record_value }+) §Z.6.4.2 p50

record_type ::= record ({ record_field }+) §Z.8.8 p86

record_value ::= field_identifier => value ; §Z.6.4.2 p50

relation_symbol ::= = | < | > | <= | >= | != | <> §Z.9.3.6 p101

sequential_composition ::=
asserted_action { ; asserted_action }+ §Z.6.5 p52

simultaneous_assignment ::=
(variable_name [’] { , variable_name [’] }+
:=
(expression | record_term | any)

{ , (expression | record_term | any) }+) §Z.6.4.3 p51

subcomponent_port_reference ::=
subcomponent_identifier { . subcomponent_identifier }*
. port_identifier §Z.3.7 p28

subexpression ::=
[- | not | abs]
(value | (expression_or_relation)
| conditional_expression | case_expression) §Z.7.5 p75

subpredicate ::=
[not]
(true | false | stop
| predicate_relation
| timed_predicate
| event_expression
| def logic_variable_identifier) §Z.9.3.1 p97

subprogram_annex_subclause ::=
annex Action {** subprogram_behavior **} ; §Z.10 p112

Chapter 4. Appendix: Alphabetized Grammar

SAE INTERNATIONAL AS5506/Z BLESS Annex v0.9 Page 149 of 159

subprogram_behavior ::=
[assert { assertion }+]
[pre assertion]
[post assertion]
[invariant assertion]
behavior_action_block §Z.10.1 p112

subprogram_invocation ::=
subprogram_name ([parameter_list]) §Z.5.8 p44

subprogram_name ::=
subprogram_prototype_name
| required_subprogram_access_name
| subprogram_subcomponent_name
| subprogram_unique_component_classifier_reference
| required_data_access_name . provided_subprogram_access_name
| local_variable_name . provided_subprogram_access_name §Z.5.8 p44

target ::= local_variable_name | output_port_name §Z.5.1 p37

time_expression ::=
time_subexpression
| time_subexpression - time_subexpression
| time_subexpression / time_subexpression
| time_subexpression { + time_subexpression }+
| time_subexpression { * time_subexpression }+ §Z.9.3.3 p98

time_subexpression ::= [-]
(time_assertion_value
| (time_expression)
| assertion_function_invocation) §Z.9.3.3 p99

timed_expression ::=
(assertion_value

| parenthesized_assertion_expression
| predicate_invocation)

[’ | ˆ integer_expression | @ time_expression] §Z.9.4.1 p106

timed_predicate ::=
(name | parenthesized_predicate | predicate_invocation)
[’ | @ time_expression | ˆ integer_expression] §Z.9.3.2 p98

transition_condition ::=
dispatch_condition
| execute_condition
| mode_condition
| internal_condition §Z.3.4 p24

transitions ::= transitions { behavior_transition }+ §Z.3.4 p24

trigger_logical_expression ::=
event_trigger { logical_operator event_trigger }* §Z.3.7 p27

Chapter 4. Appendix: Alphabetized Grammar

SAE INTERNATIONAL AS5506/Z BLESS Annex v0.9 Page 150 of 159

type ::=
type_name
| number_type
| enumeration_type
| array_type
| record_type
| variant_type
| boolean
| string §Z.8.3 p81

type_name ::=
{ package_identifier :: }* data_component_identifier

[. implementation_identifier]
| natural | integer | rational | real
| complex | time | string §Z.9.2.1 p94

unique_component_classifier_reference ::=
{ package_identifier :: }* component_type_identifier
[. component_implementation_identifier] §Z.7.2.2 p72

universal_quantification ::=
all logic_variables logic_variable_domain
are predicate §Z.9.3.8 p102

(for subprograms)
value ::=

variable_name | value_constant | function_call
| incoming_subprogram_parameter_identifier | null §Z.10.3 p114

(for threads)
value ::=

now | tops | timeout | null |
| value_constant | in mode ({ mode_identifier }+)
| variable_name | function_call | port_value §Z.7.1 p70

value_constant ::=
true | false | numeric_literal | string_literal
| property_constant | property_reference §Z.7.2 p71

variables ::= variables { behavior_variable }+ §Z.3.3 p22

variant_type ::=
variant [discriminant_identifier]
({ record_field }+) §Z.8.9 p87

when_throw ::=
when (boolean_expression) throw exception_identifier §Z.6.11 p64

while_loop ::=
while (boolean_expression_or_relation)
[invariant assertion]
[bound integer_expression]
behavior_action_block §Z.6.10.1 p61

Chapter 4. Appendix: Alphabetized Grammar

SAE INTERNATIONAL AS5506/Z BLESS Annex v0.9 Page 151 of 159

Alphabetized Lexicon

base ::= digit [digit] §2.4.2 p133

based_integer_literal ::=
base # based_numeral # [positive_exponent] §2.4.2 p133

based_numeral ::= extended_digit [] extended_digit §2.4.2 p133

character ::= graphic_character | format_effector
| other_control_character §2.1 p130

comment ::= --{non_end_of_line_character}* §2.6 p134

complex_literal ::=
[[-] real_literal : [-] imaginary_part_real_literal] §2.4.4 p134

decimal_integer_literal ::= numeral §2.4.1 p133

decimal_real_literal ::= numeral . numeral [exponent] §2.4.1 p133

digit ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 §2.1 p131

exponent ::= (E|e) [+] numeral | (E|e) - numeral §2.4.1 p133

extended_digit ::=
digit | A | B | C | D | E | F | a | b | c | d | e | f §2.4.2 p133

format_effector
The control functions of ISO 6429 called character tabulation (HT),
line tabulation (VT), carriage return (CR), line feed (LF), and
form feed (FF). §2.1 p131

graphic_character ::= identifier_letter | digit | space_character
| special_character §2.1 p130

identifier ::= identifier_letter {[] letter_or_digit}* §2.3 p132

identifier_letter
upper_case_identifier_letter | lower_case_identifier_letter §2.1 p130

integer_literal ::= decimal_integer_literal | based_integer_literal §2.4 p133

letter_or_digit ::= identifier_letter | digit §2.3 p132

lower_case_identifier_letter
Any character of Row 00 of ISO 10646 BMP whose name begins
Latin Small Letter. §2.1 p131

numeral ::= digit {[] digit}* §?? p??

numeric_literal ::=
integer_literal | real_literal | rational_literal | complex_literal §2.4 p133

other_control_character
Any control character, other than a format_effector, that is allowed
in a comment; the set of other_control_functions allowed in comments
is implementation defined. §2.1 p131

Chapter 4. Appendix: Alphabetized Grammar

SAE INTERNATIONAL AS5506/Z BLESS Annex v0.9 Page 152 of 159

rational_literal ::=
[[-] dividend_integer_literal | [-] divisor_integer_literal] §2.4.3 p134

real_literal ::= decimal_real_literal §2.4 p133

space_character
The character of ISO 10646 BMP named Space. §2.1 p131

special_character
Any character of the ISO 10646 BMP that is not reserved for a control
function, and is not the space_character, an identifier_letter,
or a digit. §2.1 p131

string_element ::= "" | non_string_bracket_graphic_character §2.5 p134

string_literal ::= "{string_element}*" §2.5 p134

upper_case_identifier_letter
Any character of Row 00 of ISO 10646 BMP whose name begins

Latin Capital Letter. §2.1 p131

Chapter 4. Appendix: Alphabetized Grammar

Index

| such that, 114, 124
booleanB boolean, 115
‖A‖ cardinality, 115
R? transitive reflexive closure, 116
R+ transitive irreflexive closure, 116
¬ complement, 117, 123
C complex, 83, 115
◦ relational composition, 116
� concurrent combination, 120
‖ concurrent, 119
∧ conjunction, 117, 124
∨ disjunction, 117, 124
∅ empty set, 115
≡ equivalence, 115
⊕ exclusive disjunction, 117
∃ exists, 124
∀ for all, 119, 124
↔ if-and-only-if, 117
→ implication, 117, 124
∈ element of set, 115
Z integer, 83, 115
∩ intersection, 115
M meaning, 120
N0 natural, 83, 115
not, 96
< not element of set, 115
@, 118, 119
v, 118
� permutation, 118
× product, 116∏

product of, 121
Q rational, 83, 115

R real, 83, 115
y sequential combination, 120
⊆ subset, 115
true, 96
> true, 124
∪ union, 115
V, top, 80
& concurrent composition, 53
<<>> assertion delimeters, 92
:= assign, 23
:= assertion-function, 94
[] alternative, 54
{} body, 56
:: name separator, 76
: , 74
.. closed interval, 61, 84
,, open interval, 100, 121
,. open left, 100, 121
., open right, 100, 121
.. closed interval, 100, 121
+=> assertion-enumeration, 95
()˜> guard, 54
ˆ periods hence or previously, 97
ˆ periods hence or previously, 105
-> enumeration pair, 95
-> implies, 95
? get port value, 41
?? conditional, 74
?? conditional, 106
; sequential composition, 51
’ next, 97
’ next, 105

153

SAE INTERNATIONAL AS5506/Z BLESS Annex v0.9 Page 154 of 159

-[]-> transition, 24

abort, 33, 34
Access Time, 42
action, 47
Action annex sublanguage, 111
actual parameters, 93
all, 62
all-are, 101
AllItems, 40
alphabet, 118
alternative, 54
and, 73
and-then, 73
annex subclause, 4
antisymmetric, 116
any, 49
array, 72, 84
array type, 84
ASER, 45
assert clause, 18
asserted action, 46
assertion, 92
Assertion annex libraries, 91
Assertion-enumerations, 91
Assertion-functions, 91
assertion-predicate, 93
Assertion-predicates, 91
assertion-value, 106
automata, 126
Await Dispatch, 25

BA quotation
intro (1), 3
intro (2), 3
intro (3), 4
scope (1), 4
D.1(4), 12, 13
D.2(1), 14
D.2(10), 16
D.2(11), 16
D.2(2), 14
D.2(3), 14
D.2(4), 15
D.2(5), 15
D.2(6), 15

D.2(7), 15
D.2(8), 15
D.2(9), 15
D.3(1), 17
D.3(12), 20
D.3(13), 19
D.3(18), 26
D.3(19), 24
D.3(20), 24
D.3(22), 17
D.3(24), 19
D.3(26), 24
D.3(27), 25, 30
D.3(28), 25, 30
D.3(3), 17
D.3(6), 22
D.3(8), 19
D.3(9), 19
D.3(C1), 18, 21
D.3(C2), 18, 21
D.3(C3), 21, 25
D.3(C4), 21, 28
D.3(C5), 22
D.3(L1), 18, 21
D.3(L11), 57
D.3(L2), 21
D.3(L3), 21, 25
D.3(L4), 21
D.3(L5), 31
D.3(L6), 21
D.3(L7), 21
D.3(L8), 21, 25
D.3(L9), 31
D.3(N1), 18
D.3(N2), 25
D.4(1), 30
D.4(2), 29
D.4(3), 29
D.4(4), 30
D.4(5), 32, 33
D.4(6), 30, 34
D.4(7), 20, 34
D.4(8), 20, 34
D.4(C4), 28
D.4(L1), 31
D.4(L2), 33

Index Index

SAE INTERNATIONAL AS5506/Z BLESS Annex v0.9 Page 155 of 159

D.4(N1), 31, 34
D.4(N2), 31, 34
D.5(1), 36
D.5(10), 112
D.5(11), 42
D.5(12), 42
D.5(13), 42
D.5(14), 43
D.5(15), 43
D.5(16), 42
D.5(17), 27, 112
D.5(18), 44
D.5(19), 45
D.5(2), 36
D.5(20), 35
D.5(21), 35, 45
D.5(3), 37
D.5(4), 38, 39
D.5(5), 39
D.5(6), 37, 38
D.5(7), 38
D.5(9), 40, 41
D.5(C1), 38
D.5(C2), 43
D.6(1), 46
D.6(10), 36
D.6(11), 51, 52
D.6(14), 45
D.6(15), 49
D.6(16), 49
D.6(18), 50
D.6(2), 47
D.6(21), 49
D.6(3), 48
D.6(4), 48
D.6(5), 50
D.6(L1), 49
D.6(L2), 61
D.6(L3), 53
D.6(L4), 53
D.6(L5), 45
D.6(L7), 64
D.6(L8), 50
D.6(N1), 61
D.7(1), 72
D.7(10), 71

D.7(11), 71
D.7(2), 72
D.7(3), 69
D.7(4), 70
D.7(5), 72
D.7(6), 129
D.7(7), 132
D.7(9), 71
D.7(L3), 73
D.7(L5), 73
R.7(12), 72

before, 119
behavior action block, 56
behavior actions, 46, 61
behavior state, 123
behavior variables, 22
behavior transition, 25
behavior transition label, 26
big step, 128
bijective, 117
BLESS Differs from BA

assert and invariant sections, 18
or optional in port lists, 33
skip, 48
timeout as dispatch trigger, 30
assertions around actions, 46
BA has no types, 80
catch clause, 56
empty dequeue exception, 41
formal-actual subprogram parameters, 45
has variable assertion, 23
if [] fi, 54
issue exception, 51
local variables for block, 56
mandatory states keyword, 18
mode instead of external condition, 24, 27
mode trigger, 27
no

for subprogram invocation, 44
no local variable properties, 70
no variable properties, 23
only integer range, 58, 61
operator precedence, 73
port identifiers must have ? or ’, 77
port list on port event timeout, 32
port names must have suffix: ? or ’, 77

Index Index

SAE INTERNATIONAL AS5506/Z BLESS Annex v0.9 Page 156 of 159

record assignment, 49
restricted to subcomponent port, 28
simultaneous assignment, 49
single state identifier allowed, 19
states may have assertions, 19
subprogram basic actions, 113
subprogram values, 113
subprograms have no transitions, 111
timeout, 33
transitions may have assertions, 24
type more general, 23
variable persistence, 22
variables have no property associations, 22

bound, 60
bound function, 60

call sequence, 17
cardinality, 115
Cartesian product, 116
case expression, 75
catch, 62
catch clause, 56
character, 129
clock, 125
clock operator, 122
closure, 116
co-domain, 117
combinable operations, 64
communication action, 36
Complement, 123
complement, 117
complete, 19–22, 25, 29, 34, 38, 118
complete state, 20
complex, 82
complex literal, 132, 133
component halted, 33, 34
components, 116
compound delimiters, 131
computation action, 50
concatenation, 118
Concurrency Control Protocol, 42, 112
concurrent, 64
concurrent formula composition, 52
concurrent lattice combination, 120
conditional assertion expression, 106
conditional assertion function, 106

conditional expression, 74
Conjunction, 124
conjunction, 117
constant, 23, 70
Contradiction, 123
count, 39

data component, 81
Data Modeling Annex, 79
def, 96
delimiter, 131
Dequeue Protocol, 40
device, 12
difference, 115
digit, 130
directed, 119
discriminant, 86
disjoint, 115
Disjunction, 124
disjunction, 117
dispatch condition, 24, 29
dispatch expression, 29
dispatch trigger, 29, 30
dispatch expression, 31
Dispatch Protocol, 25, 29, 30
Dispatch Trigger, 24
dispatch trigger, 31
Distribution, 124
do, 62
do-until, 62
domain, 117

else , 74
empty sequence, 118
enumeration, 81
Equality, 124
event, 30, 102
exception, 62
Excluded Middle, 123
exclusive disjunction, 117
execute condition, 24, 26
execution, 21
execution trace, 128
Existential Quantification, 124
existential quantification, 102
exists-that, 102

Index Index

SAE INTERNATIONAL AS5506/Z BLESS Annex v0.9 Page 157 of 159

expression, 72
extended, 21

false, 70, 95, 96, 114
fetchadd, 65
fetchand, 65
fetchor, 65
fetchxor, 65
fi, 54
final, 19–21, 23, 34
final state, 20
Finalize Entrypoint, 34
fixed point, 117
fixed-point, 115
for, 61
for loop, 61
forall, 58
forall action, 58
formal parameters, 93
format effector, 130
fresh, 39
function, 76, 88, 117
function call, 76

Get Count, 40
Get Resource, 42
Get Value, 38, 40, 41
graph, 119
graphic character, 129
greater than, 118
guards, 54

HSER, 45
Hybrid, 30
hyperperiod, 121

if, 54
if , 74
if-and-only-if, 117
Implication, 124
implication, 117
in, 58, 96, 101
in data port, 38, 39
in event data port, 39, 41
in event port, 38
in mode, 27, 69

in out, 42
index, 118
initial, 19–21, 34
initial final complete, 34
initial final complete state, 34
Initialize Entrypoint, 34
injective, 117
Input Time, 37–39
insertion combination, 120
integer, 82
integer literal, 132
interference free, 58
interference-free, 64
intersection, 115
invariant, 60
invariant clause, 18
irreflexive, 116
issue exception, 51

JP, 4, 18, 25, 26, 28, 38, 44, 47, 51, 53, 55, 57, 59–
62, 112, 125–128

label, 24
lattice, 119, 120
lattice state, 122
least element, 118
least upper bound, 118
less than, 118
letter, 130
logic, 123
LSER, 45

meaning, 120
minimum, 115
mod, 73, 103
mode, 4, 17, 21
mode condition, 27
mode conditions, 21
mode transition, 28
mode transition triggers, 25, 28
model time, 121
MultipleItems, 40

n-tuple, 116
name, 71
natural, 82

Index Index

SAE INTERNATIONAL AS5506/Z BLESS Annex v0.9 Page 158 of 159

Next Value, 38, 40, 41
nonvolatile, 23
not, 74
now, 69, 121
null, 40, 122
number type, 82
numberof, 103
numeric literal, 132

of, 103
on dispatch, 29
one-to-one, 117
OneItem, 40
onto, 117
or, 73
or-else, 73
ordered pair, 115
out, 42
out event data port, 44
out event port, 43
Output Time, 37, 43, 44

p’count, 40, 41
p’fresh, 39, 41
p’updated, 40
p?(v), 41
partial order, 118
Period, 25, 30, 33
period-shift, 98
permutation, 118
port trace, 128
post, 111
pre, 111
predicate, 95
Predicate relations, 100
product, 103
Put Value, 43

range, 100, 117
rational, 82
rational literal, 132, 133
Read Empty Event Data Port, 41
real, 82
real literal, 132
real time, 121
Receive Input, 37–41

Reconciliation
>> freeze port, 37
cand→ and then, 28
cor→ or else, 28
absolute value, 74, 104
add if-elsif-else, 54
and then, 73
behavior action block, 24
call sequence, 17
computation action, 50
inequality, 74, 100
locking actions, 63
mode, 28
multiple identifier package names, 81
non-dequeued port, 40
or else, 73
rem, 73
removed $ from function invocation, 76
transition priority, 24

record, 72, 85, 88
record term, 49
record type, 85
reflexive, 116
relation, 116
relational composition, 116
Release Resource, 42
rem, 103
requires data access, 23
restriction, 117

satisfy, 123
semi-synchronous, 35
Send Output, 43
separator, 131
sequence, 118
sequential formula composition, 51
sequential lattice combination, 120
set, 114
shared, 23, 64
skip, 48
slice, 71
small step, 127
space, 130
special character, 130
spread, 23, 64
state, 19, 124

Index Index

SAE INTERNATIONAL AS5506/Z BLESS Annex v0.9 Page 159 of 159

state transition system, 18
stop, 31, 33, 96
stop events, 30
stop port, 30, 96
string, 118
subcomponent, 21
subexpression, 74
subjective, 117
subprogram, 12, 76
subprogram invocation, 44
subset, 115
substring, 118
sum, 103
swap, 65
symmetric, 116
synchronous, 35
synchronous product, 127

tautology, 123
then , 74
thread, 12, 35
throw, 63
time, 82
time-expression, 97
time-of-previous-suspension, 32
Time Units, 33
Timed, 30, 32, 33
timed dispatch protocol, 15
timed expression, 105
timed formula, 125
timed predicate, 96
Timeout, 32
timeout, 30–32, 69
Timing Properties::Time, 33
tops, 32, 69, 106
transition system, 127
transition condition, 25
transitions, 24
transitive, 116
true, 70, 95, 114
tuple, 117
type, 80, 121

union, 115
units, 82, 84
Universal Quantification, 124

universal quantification, 101
unsatisfiable, 123
until, 62
Updated, 40
updated, 39
upper bound, 118

value, 69, 113, 121
variable, 72
variables, 22, 56
variant, 72, 86, 89
variant type, 86

weakest precondition, 47
well synchronized, 28
well-formed, 123
when, 63
while, 60
while loop, 60

xor, 73

Index Index

	Scope
	Overview of BLESS Concepts
	Behavior Specification
	Component Behavior
	Behavior States
	Variables
	Transitions
	Execute Condition
	Internal Conditions
	Modal Conditions
	Synchronization

	Thread Dispatch
	Dispatch Condition
	Timeout Dispatch
	abort and stop events
	Thread Providing Subprogram Dispatch

	Component Interaction
	Communication Action
	Freeze Port
	In Event Ports
	In Data Ports
	In Event Data Ports
	Concurrency Control
	Out Ports
	Subprogram Invocation

	Action
	Behavior Actions
	Asserted Action
	Action
	Basic Actions
	Skip
	Assignment
	Simultaneous Assignment
	Computation Action
	Issue Exception

	Sequential Composition
	Concurrent Composition
	Alternative
	Behavior Action Block
	Forall
	Loops
	While Loop
	For Loop
	Do-Until Loop

	Exception Handling
	Locking Actions
	Combinable Operations
	Fetch-Add
	Fetch-And Fetch-Or Fetch-Xor
	Swap

	Behavior Expression
	Value
	Value Constant
	Property Constant
	Property Reference

	Name
	Expression
	Subexpression
	Conditional Expression
	Case Expression
	Function Invocation
	Port Value

	Type
	Ideal Types
	Types are Sets
	BLESS Type Grammar
	Data Components as Types
	Enumeration Type
	Number Type
	Array Type
	Record Type
	Variant Type
	Type Inclusion Rules
	Type Rules for Expressions

	Assertion
	Assertion Annex Library
	Assertion
	Formal Assertion Parameter
	Assertion-Predicate
	Assertion-Function
	Assertion-Enumeration

	Predicate
	Subpredicate
	Timed Predicate
	Time-Expression
	Period-Shift
	Predicate Invocation
	Predicate Relations
	Parenthesized Predicate
	Universal Quantification
	Existential Quantification
	Event

	Assertion-Expression
	Timed Expression
	Parenthesized Assertion Expression
	Assertion-Value
	Conditional Assertion Expression
	Conditional Assertion Function
	Assertion-Function Invocation
	Assertion-Enumeration Invocation

	Subprogram
	Subprogram Behavior
	Subprogram Basic Actions
	Value for Subprograms

	Appendix: Mathematics
	Sets
	Tuples
	Relations
	Functions
	Sequences
	Strings
	Partial Orders
	Graphs
	Lattices
	Meaning
	Time
	Values
	States
	Lattice States
	Behavior States

	Arithmetic
	Logic
	Computation Satisfaction
	Clock
	Timed Formula
	Automata
	Synchronous Product
	Small Step
	Big Step
	Trace

	Appendix: Lexicon
	Character Set
	Lexical Elements, Separators, and Delimiters
	Identifiers
	Numeric Literals
	Decimal Literals
	Based Literals
	Rational Literals
	Complex Literals

	String Literals
	Comments

	Appendix: Package and Properties
	Appendix: Alphabetized Grammar
	Index

